<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于小波包的開關電流電路故障診斷

Fault detection in switched current circuits based on preferred wavelet packet

  • 摘要: 為提高開關電流電路故障診斷的精度,提出了一種基于小波包優選和優化BP神經網路的開關電流電路特征抽取與識別方法.首先對開關電流電路原始響應信號進行多層次的小波包分解,接著計算N層分解后的歸一化能量值,以特征偏離度作為評價選擇最優小波包基,構建最優故障特征向量,最后將提取的最優故障特征通過遺傳算法優化的BP神經網絡進行分類.該方法以實例電路進行驗證,結果表明所有的軟故障均得到了有效的分類,說明了該方法在開關電流電路故障診斷中的優越性.

     

    Abstract: In order to improve the accuracy of switched current circuit fault diagnosis, a feature extraction and recognition method of switched current circuit based on wavelet packet optimization and optimization of BP neural network was proposed. Firstly, the wavelet packet decomposition of the original response signal of the switched current circuit was carried out. Then, the normalized energy value after the decomposition of the N layer was calculated, and the optimal wavelet packet basis was selected by using the characteristic deviation as the evaluation. Finally, the optimal fault feature vector was constructed. The extracted optimal fault characteristics were classified by BP neural network optimized by genetic algorithm. The results of this method were verified by the example circuit. The results show that all the soft faults are effectively classified, and the superiority of the method in the fault diagnosis of the switched current circuit is illustrated.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164