<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

夾雜物對超高強度鋼應力應變場的影響

Influence of inclusion on stress and strain fields in ultra-high strength steel

  • 摘要: 非金屬夾雜物對鋼性能的影響與夾雜物的特征參數密切相關.首先分析拉伸和疲勞載荷下超高強度鋼中TiN夾雜物導致裂紋萌生的掃描電鏡原位觀察結果,采用MSC Marc有限元分析軟件對夾雜物及周圍基體的應力場進行計算,然后對拉伸載荷下不同特征參數的TiN夾雜物及周圍基體的應力應變場進行模擬.結果表明,有限元法能夠解釋并預測夾雜物及周圍基體的力學行為.三角形夾雜物尖角附近的應力集中最嚴重.矩形夾雜物內部高應力區的位置受夾雜物與外載荷方向夾角的影響.隨鄰近夾雜物間距的增大,基體內的最大應力由夾雜物外側移至夾雜物之間.近表面夾雜物使得基體自由表面附近出現高應力區,基體內最大應力的位置受夾雜物與自由表面距離和尺寸的影響.

     

    Abstract: The influence of non-metallic inclusion on the performance of steels is closely related to the characteristic parameters. The in-situ scanning electron microscope (SEM) observation results of the crack initiation induced by TiN inclusion under tensile and fatigue loads in the ultra-high strength steel were analyzed. The stress fields of the inclusions and nearby matrix were then calculated using the MSC Marc finite element analysis software. Subsequently, the stress and strain fields of the TiN inclusions with different characteristic parameters and the nearby matrix were simulated. The results show that the mechanical behavior of the inclusions and the nearby matrix can be explained and predicted by finite element method. The maximum stress concentration is located around the sharp angle of a triangle inclusion. The position of the high-stress region in a rectangle inclusion is affected by the angle between the inclusion and the load direction. The position of the maximum stress in the matrix changes from the outer-inclusion region to the inter-inclusion region with the increase of the inter-inclusion distance. The high-stress region near the free surface results from the sub-surface inclusions, and the position of the maximum stress is affected by the distance from the inclusion to the free surface and the inclusion size.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164