<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

鋁含量對TWIP鋼中夾雜物特征及AlN析出行為的影響

Influence of Al content on the characteristics of non-metallic inclusions and precipitation behaviors of AlN inclusions in TWIP steel

  • 摘要: 采用掃描電鏡、X射線能譜儀以及掃描電鏡配置的夾雜物自動掃描統計軟件(INCAFeature)表征了Fe-Mn-C(-Al)系TWIP鋼中夾雜物的成分、形貌和數量,考察了Al質量分數在0.002%~1.590%的四種TWIP鋼中夾雜物的特征和Al含量對AlN析出行為的影響.并在此基礎上,采用了適合TWIP鋼中高錳高鋁特點的熱力學參數對AlN夾雜物進行了系統的熱力學分析.研究表明,在含有相似N質量分數(0.0078%~0.0100%)的TWIP鋼中,當鋼中Al質量分數升高至0.75%時,AlN夾雜物開始在鋼中析出,并在MnS(Se)-Al2 O3上局部析出形成MnS(Se)-Al2 O3-AlN復合夾雜;當Al質量分數升高至1.07%時,熱力學計算表明AlN已經可以在TWIP鋼液相中形成,經不斷長大后在MnS(Se)夾雜物表面局部析出形成MnS(Se)-AlN復合夾雜物;在Al質量分數為1.59%的TWIP鋼中,AlN的平衡析出溫度比其液相線溫度高出42℃,在液相中形成的AlN可以作為異質核心,MnS(Se)夾雜在其表面包裹形成MnS(Se)-AlN復合夾雜物.另外,在Fe-18.21% Mn-0.64% C-1.59% Al體系的TWIP鋼中,AlN在液相中析出所需的最低氮的質量分數僅為0.0043%.因此,在TWIP鋼的冶煉過程中,應盡可能的降低鋼中的氮含量,避免生成過量的AlN夾雜.

     

    Abstract: The morphology, composition, and number of inclusions in Fe-Mn-C(-Al) twining-induced plasticity (TWIP) steels were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and an automated program called "INCAFeature". The characteristics of the inclusions in four TWIP steels with different Al contents (0.002% -1.590%) as well as the influence of Al content on the precipitation of AlN inclusions were investigated. In addition, systematic thermodynamics calculations of AlN formed in TWIP steel were carried out using the appropriate thermodynamic data for high-Mn-Al TWIP steel. The results show that AlN would begin to precipitate and locally precipitate around the MnS(Se) -Al2O3 inclusions when the Al content in the steel reaches 0.75%. The thermodynamics calculations show that AlN could already form in the liquid TWIP steel at an Al content of 1.07%. Then, AlN would locally precipitate around the MnS(Se) inclusions, thus forming MnS(Se) -AlN aggregates. When the Al content increases to 1.59%, the precipitation temperature of AlN is 42℃ higher than the liquidus temperature of the TWIP steel. Furthermore, precipitated AlN inclusions in the liquid TWIP steel could act as heterogeneous nuclei for MnS(Se) inclusions, thus forming MnS(Se) -AlN inclusions. Moreover, according to the thermodynamics calculation, the lowest N content for AlN formation in the liquid Fe-18.21% Mn-0.64% C-1.59% Al steel is just 0.0043%. Therefore, the N content should be kept as low as possible to avoid the formation of excessive AlN inclusions during melting of Fe-Mn-C(-Al) TWIP steel.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164