<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

超細晶鈦酸鋇基儲能陶瓷的性能與微觀結構

Properties and microstructure of ultrafine-crystalline BaTiO3-based energy storage ceramics

  • 摘要: 利用水基化學包覆法在納米鈦酸鋇粉體包覆氧化鋁、二氧化硅和氧化鋅等物質,并通過兩段式燒結法制備了平均晶粒尺寸120 nm的超細晶鈦酸鋇基儲能陶瓷.包覆層的存在抑制了晶粒生長和異常晶粒長大,同時將陶瓷的交流擊穿場強大幅提高至150 kV·cm-1以上,儲能密度達到0.829 J·cm-3.電子能量損失譜顯示,包覆摻雜的元素明顯偏聚于陶瓷晶界,形成具有芯-殼結構的晶粒.而高溫阻抗譜的測試和擬合結果則進一步解釋了陶瓷性能改善的原因.雖然此超細晶陶瓷的儲能密度并不十分突出,但其晶粒細小均勻、燒結溫度低,因而可用于制備多層陶瓷電容器,從而大幅提高儲能密度,這是常見的儲能陶瓷無法實現的.

     

    Abstract: Al2O3, SiO2 and ZnO were coated around nano-sized BaTiO3 particles by means of aqueous chemical coating. Then, BaTiO 3 -based energy storage ceramic material with average grain size of 120 nm was fabricated by the two-step sintering method. The coating layer can restrain grain growth and abnormal grain growth, and can enhance significantly the AC breakdown strength of the material to over 150 kV·cm-1, while providing energy density of 0.829 J·cm-3. Energy-dispersive spectroscopy proves the gathering of doping elements near grain boundaries, thus indicating the existence of a core-shell structure. High-temperature impedance spectroscopy and fitting results further explain that the energy storage properties were improved. Although the energy density of this ultrafinecrystalline ceramic material is moderate, the advantages of fine grains and low sintering temperature make it possible for the material to be used in multilayer ceramic capacitors, which can increase energy storage by orders of magnitude. This improvement is impossible to achieve with conventional energy storage ceramics.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164