<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

FeCrAl不銹鋼的平衡凝固相變與析出行為

Phase transformations and precipitation behavior in FeCrAl stainless steel during equilibrium solidification

  • 摘要: 借助Thermo-calc軟件對FeCrAl不銹鋼所屬的Fe-(18~21) Cr-(3~5) Al-(0~0.03) C-(0~0.2) Si-(0~0.2) Mn多元體系在凝固過程中的相變及析出行為進行了研究.采用Thermo-calc中TCFE7數據庫對該體系的垂直截面圖進行計算,分析了不同組元對凝固和冷卻過程中相變的影響,并得到FeCrAl不銹鋼的平衡凝固相變路徑圖.結果表明FeCrAl不銹鋼由1600℃平衡冷卻至300℃的過程中完整的平衡相變路徑為:L→AlN+αδFe→AlN+αδFe+Cr7C3→AlN+αδFe+Cr7C3+Cr23C6→AlN+αδFe+Cr23C6→AlN+αδFe+Cr23C6+σ→AlN+αδFe+Cr23C6+σ+α'→AlN+αδFe+Cr23C6+α'.凝固過程中Cr7C3與σ相是否析出分別取決于體系中C、Si含量;Al含量的提高可擴大αδFe+Cr7C3的穩定區,降低α'相的析出溫度,抑制σ相的析出;Cr含量的提高可以減小αδFe+Cr7C3的穩定區,擴大σ相和α'相的穩定區.

     

    Abstract: The phase transformations and precipitation behavior were investigated by using Thermo-Calc software in the Fe-(18-21)Cr-(3-5)Al-(0-0.03)C-(0-0.2)Si-(0-0.2)Mn multicomponent system relevant to FeCrAl stainless steel during solidification. The vertical sections of this system were calculated by using the TCFE7 database. Based on these vertical sections, the influence of different elements was analyzed in the phase transformations during solidification and a diagram of the phase-transformation path of FeCrAl stainless steel was obtained during equilibrium solidification. The results indicate that the full-phase transformation path of FeCrAl stainless steel during the cooling process from 1600℃ to 300℃ is as follows:L→AlN+αδFe→AlN+αδFe+Cr7C3→AlN+αδFe+Cr7C3+Cr23C6→AlN+αδFe+Cr23C6→AlN+αδFe+Cr23C6+σ→AlN+αδFe+Cr23C6+σ+α'→AlN+αδFe+Cr23C6+α'. The precipitation of Cr7C3 and σ, during the solidification process mainly depends on the carbon and silicon contents in the system, respectively. Increasing the aluminum content can enlarge the stable region of αδFe+Cr7C3, lower the precipitation temperature of α', and restrain σ precipitation. Increasing the chromium content can reduce the stable region of αδFe+Cr7C3 and enlarge the stable region of σ and α'.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164