<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

低合金鋼焊接熱影響區的微觀組織和韌性研究進展

Research progress on microstructures and toughness of welding heat-affected zone in low-alloy steel

  • 摘要: 對鋼結構而言,諸如海洋平臺、船舶、橋梁、建筑和油氣管線等,焊接后的性能直接決定了其服役壽命和安全性,重要性不言而喻.在針對焊接相關問題的研究中,焊接熱影響區的韌性提升一直是重點和難點.焊接熱影響區會經歷高達1400℃的高溫,從而形成粗大的奧氏體晶粒,如果焊接參數控制不當,不能通過后續冷卻過程中的相變細化組織,就會造成韌性的降低.而多道次焊接的情況更為復雜,前一道次形成的粗晶區還會在后續焊接過程中經歷二次熱循環,從而形成鏈狀M-A,造成韌性的急劇下降.本文旨在對一些現有焊接熱影響區的相關研究結果進行總結,探討母材的成分、第二相及焊接工藝等因素對熱影響區微觀組織和性能的影響,為低溫環境服役的大型鋼結構的焊接性能改善提供一些設計思路.

     

    Abstract: The welding performance of steel structures such as offshore platforms, ships, bridges, buildings, and oil and gas pipelines directly determines the service life and safety of the structure, the importance of which cannot be minimized. In welding-related research, the toughness of the welding heat-affected zone is a key issue. This zone experiences temperatures as high as 1400℃, thereby causing the formation of coarse austenite grains. If the welding parameters are improperly controlled, microstructure refinement cannot be achieved by subsequent phase transformation, which results in decreased impact toughness. Multi-pass welding is even more complex, with the secondary heat input affecting the coarse-grain zone formed during the previous pass. This results in the formation of necklace-type M-A constituents, which also lead to deterioration in toughness. In this paper, the relevant research results were summarized with regarding the welding heat-affected zone and it was discuss that the composition of the parent material, the second phase, the welding process, and other factors effect the microstructures and properties of the heat-affected zone. This paper also offers ideas for improving the welding performance of large steel structures in low-temperature service circumstances.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164