<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于關聯關系的仿真模型實時智能推薦方法

Real-time intelligent recommendation method of a simulation model based on incidence relation

  • 摘要: 當全球導航衛星系統(global navigation satellite system,GNSS)分布式仿真環境中共享的模型數量非常多時,檢索模型和配置仿真任務將成為一個比較復雜的工程.為提高仿真模型選取和仿真任務配置的效率,設計了一套針對GNSS分布式仿真環境中仿真模型的實時智能推薦方法,方法中首先定義了模型關聯關系和接口形狀的概念,然后提出了一種條件約束下的頻繁模式樹(FP-tree)結構,并從理論上分析了該結構在檢索任務量方面的減少程度,設計并推導了模型關聯關系度的計算方法,以及整套智能推薦方法的運行流程.推薦方法在GNSS分布式仿真環境中進行了仿真驗證,仿真結果與傳統智能推薦方法做對比分析,分析結果表明,該方法針對仿真模型推薦時運行時間短,推薦結果準確度高,能夠實時為用戶推薦合適的模型.

     

    Abstract: With the availability of a large number of sharing models, model search and task design would be an extremely complex project in the global navigation satellite system (GNSS) -distributed simulation environment (GDSE). For improving the efficiency of model search and task design, a real-time intelligent recommendation method was designed for GDSE. Based on the characteristics of the simulation model, the incidence relation and interface shape of the model were defined in the method and a conditional frequent pattern tree (FP-tree) structure was designed to further improve the retrieval efficiency. The effect of the conditional FP-tree structure was proved theoretically. Then, the calculation method of the model incidence relation degree was proposed and derived based on the Bayesian statistical method. The entire processing of the intelligent recommendation method was designed for implementing it in GDSE. Hence, to check the effect of the real-time intelligent recommendation method, it was implemented in GDSE. Compared with the simulation result of the traditional recommendation method, the model intelligent recommendation method is proved to have a shorter running time and a high accuracy on simulation model recommendation. The computing capability and real-time performance are proved through the simulation. It is demonstrated that the intelligent recommendation method is efficient and flexible for GDSE.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164