<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

變渣皮厚度條件下銅冷卻壁應力分布規律及掛渣穩定性

Stress distribution law and adherent dross stability of the copper cooling stave with variable slag coating thickness

  • 摘要: 根據熱彈性力學理論,建立了渣皮厚度可變的銅冷卻壁熱-力耦合應力場分布計算模型,從銅冷卻壁本體和爐渣-鑲磚界面應力分布的角度分析了煤氣溫度、冷卻制度、鑲磚材質和爐渣性質等因素對銅冷卻壁壽命及掛渣穩定性的影響規律.計算結果表明:煤氣溫度的升高使銅冷卻壁本體應力線性升高,同時掛渣穩定性減弱;銅冷卻壁本體應力值及掛渣穩定性均隨渣皮厚度增加而呈現先下降后上升的趨勢,實際生產中渣皮厚度應維持在30~60 mm之間;冷卻水流速的增大會導致銅冷卻壁本體應力值小幅上升,但可使掛渣穩定性增強;冷卻水溫的提升可小幅降低冷卻壁本體應力,但會顯著降低掛渣穩定性;鑲磚熱導率的提升和爐渣熱膨脹系數的減小均有利于降低銅冷卻壁本體應力并增強掛渣穩定性.

     

    Abstract: A thermal-mechanical coupling model of a copper cooling stave with variable slag coating was founded based on thermal elastic mechanics, and the influence of the gas temperature, the cooling system, the materials of insert bricks, and the properties of the slag on the stave life and the stability of the adherent dross was analyzed from the view point of the stress distribution of the stave body and the slag-brick interface. The results show that the increase of the gas temperature linearly improves the stress of stave body and reduces the stability of the adherent dross meanwhile. The stress of the stave body and the stability of the adherent dross both decrease at first and then increase when the slag coating thickness increases, and the slag coating thickness should be controlled between 30 to 60 mm. The increase of water velocity incurs tiny growth of the stress of the stave body, while the stability of the adherent dross is enhanced. The stress of the stave body is weakly reduced with the increase of water temperature, but the stability of the adherent dross decreases heavily meanwhile. The increase of the heat conductivity of insert bricks and the decrease of the heat expansion coefficient of the slag significantly reduce the stress of the stave body and enhance the stability of the adherent dross.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164