<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

210tRH精煉過程的混勻特性

Mixing characteristics of 210tRH refining process

  • 摘要: 以某鋼廠210tRH真空精煉裝置為原型,根據相似原理建立1∶4水模型,研究了吹氣量、浸入深度、真空度以及氣孔堵塞對混勻時間的影響.結果表明,RH混勻時間隨著吹氣量的增加而呈現減小的趨勢;隨著浸入深度的增加先減小后增大,并存在最佳浸入深度480 mm;隨真空室壓力的減小而減小;隨著吹氣孔堵塞個數的增加先減小后增加.利用粒子成像測速技術(particle image velocimetry,PIV)測量了RH精煉過程鋼包內二維流場,與數值模擬結果對比,發現鋼包內的流體運動主要是從下降管到上升管的循環流動以及下降管周圍的回流運動,不活躍區主要集中在渣-鋼界面以下浸漬管浸入深度范圍內.

     

    Abstract: To understand the characteristic of mixing in 210 t RH vacuum refining process,a 1:4 water model was established to investigate the effects of gas flow rate,snorkel immersion depth(SID),vacuum chamber pressure and number of blockage blowing air holeon the RH mixing time. The results show that the RH mixing time presents a decreasing trend with the increase of gas blowing andthe decrease of the vacuum chamber pressure. Furthermore,the mixing time first decreases then increases with the increaseof the snorkel immersion depth(SID) and the number of blockage blowing air hole,and the optimum SID is 480 mm. Using particle imagevelocimetry to measure the two-dimensional flow field of RH ladle in refining process,and then compared to the results of numerical simulation,the results show that the fluid movement in the ladle is mainly the circulation flow from down-leg to up-leg andthe back-flow around the down-leg. In addition,the inactive region is mainly located in the range of SID under the steel-slag interface.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164