<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

分段嘗試法研究半焦/CO2氣化反應過程動力學

A sectioning method to study the gasification reaction kinetics of semicoke with CO2

  • 摘要: 為了深入了解半焦與CO2的氣化反應過程動力學,本文通過不同升溫速率下的非等溫實驗,確定在不同階段下富鼎半焦與CO2的氣化機理.采用分段嘗試法研究富鼎半焦與CO2氣化反應過程動力學,確定反應過程前期與后期的機理函數分別為f(α)=(1-α)1-ψln(1-α)1/2f(α)=(3/2)(1-α)-1/3-1-1,從而建立相應動力學模型,計算反應過程不同階段的動力學參數.通過對不同階段的動力學模型進行數據擬合,實驗數據與模型吻合較好,相關系數都大于0.98.最后,根據求得的動力學參數,確定不同升溫速率下活化能的補償效應,即活化能與指前因子的關系式.

     

    Abstract: Non-isothermal experiments were carried out at different heating rates to further study the gasification reaction kinetics of semieoke with CO2, and the gasification mechanisms of Fuding semicoke with CO2 were confirmed in different stages. Then, it is reasonable to adopt a attempting method of subsection to study the gasification reaction kinetics and confirm the mechanism functions of the earlier and later periods in the reaction process, which are f(α)=(1-α)1-φ1n(1-α)1/2 and f(α)=(3/2)(1-α)-1/3-1-1, so the related kinetic parameters and corresponding dynamic models in different stages of the process are established. After data-fitting of the kinetic models in different stages, experimental data fit well with these models and the correlation coefficients are above 0.98. At last, according to the calculated kinetic parameters, it is clearly realized that there is compensatory effect for the activation energy at different heating rates, which is a relational expression between the activation energy and the pre-exponential factor.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164