<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

流形正則化多核模型的模糊紅外目標提取

Extraction of blurred infrared targets based on a manifold regularized multiple-kernel model

  • 摘要: 針對模糊邊緣的紅外目標提取問題,提出一種基于流形正則化多核半監督分類的提取方法.首先應用最大類間方差法計算初始分割閾值,獲得確定化的目標和背景區域以及待確定化的模糊邊緣區域;然后建立各區域內像素點鄰域空間集,并通過多核函數特征映射獲得鄰域空間中灰度均值和方差信息特征值,通過流形正則獲得鄰域空間中位置信息特征值;在特征值基礎上,建立半監督分類模型對模糊邊緣區域像素點鄰域空間集進行類別劃分;最后計算最佳分割閾值.對比實驗結果表明,該方法提取模糊邊緣紅外目標效果好且運算效率高.

     

    Abstract: Specific to the problem of infrared target extraction with blurred edges,this article introduces an extraction method based on a manifold regularized multiple kernel semi-supervised classification model.Firstly,the maximum variance of inter-class(OTSU) method is used to compute the initial segmentation threshold,and the certain target and background areas and the uncertain blurred edge area are determined.Then,local space sets of pixels are constructed in each area,the multiple-kernel functions are used to map the grayscale mean and variance in local space,and the location information feature in local space is obtained by manifold regularization(MR).On the basis of features,a semi-supervised classification model is established to classify the local space sets of pixels in the blurred edge area.Finally,the optimal segmentation threshold is computed.Experiments with comparisons show that this method is efficient and less in time-consuming.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164