<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

冷卻方式對低鈦高爐渣礦物組成和礦相結構的影響

Effect of cooling methods on the mineralogical composition and microstructure of low titanium-containing blast furnace slag

  • 摘要: 應用X射線衍射儀、偏光顯微鏡和掃描電鏡對水淬和空冷低鈦高爐渣的礦相組成、顯微結構、TiO2分布規律及其差異性進行研究.結果表明:水淬渣和空冷渣中主要礦物組成均為玻璃質、鈣鈦礦、鈣鋁黃長石和鎂硅鈣石,但是兩種爐渣中各礦物組分含量相差較大,空冷渣中鈣鋁黃長石和鈣鈦礦的平均體積分數分別為62.5%和12.5%,是水淬渣中鈣鋁黃長石和鈣鈦礦的2.27倍和1.92倍,而玻璃質的平均體積分數不足水淬渣的1/3.水淬渣和空冷渣中礦相顯微結構差異較大,空冷渣中鈣鋁黃長石為釘齒狀,而水淬渣中鈣鋁黃長石為呈羽毛狀和針狀,且結晶粒度較小,鈣鈦礦在水淬渣和空冷渣中分別呈星點狀和樹枝狀分布,兩種爐渣中鎂硅鈣石都為紡錘體形;水淬渣中TiO2主要分布在鈣鈦礦、玻璃質和鈣鋁黃長石中,而空冷渣中TiO2主要分布在鈣鈦礦和鈣鋁黃長石中,并且空冷渣中鈣鈦礦TiO2的分布率比水淬渣高8.41%,空冷方式更有利于將TiO2聚集在鈣鈦礦中.

     

    Abstract: The mineralogical composition,microstructure and TiO2 distribution rule of low titanium-containing blast furnace slags after water cooling and air cooling were investigated by X-ray diffraction,polarization microscopy and scanning electron microscopy.The results show that main mineralogical compositions in these slags are all vitreous,gehlenite,perovskite and merwinite,but the contents of mineral components in the two kinds of slags have much larger differences. The average contents of gehlenite and perovskite in the air-cooled slag are 62.5% and 12.5%,which are 2.27 and 1.92 times as large as those in the water-cooled slag,respectively.The content of vitreous in the air-cooled slag is less than a third of that in the water-cooled slag. The mineralogical microstructure of the water-cooled slag is pretty different from that of the air-cooled slag. Gehlenite in the water-cooled slag is dentate,but in the watercooled slag it is feathery and needle-shaped,and its grain size is smaller. Perovskite forms as star points and dendritic in the watercooled slag and the air-cooled slag,respectively. Merwinite is spindle-shaped both in the water-cooled slag and the air-cooled slag. It could be concluded that TiO2 in the water-cooled slag mainly distributes in perovskite,vitreous glassy and gehlenite,but TiO2 in theair-cooled slag mainly distributes in perovskite and gehlenite,and the distribution ratio of TiO2 in the air-cooled slag is 8.41% higher than that in the water-cooled slag. Air cooling is more beneficial to increase TiO2 content in perovskite.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164