<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

304L不銹鋼焊縫在混凝土模擬孔隙液中的點蝕行為

Pitting corrosion of 304 L stainless steel welds in simulated concrete pore solutions

  • 摘要: 采用動電位極化曲線、電化學阻抗譜、Mott-Schottky曲線等電化學方法研究了以308 L為焊絲的304 L不銹鋼焊接接頭在不同氯離子含量的混凝土模擬孔隙液中腐蝕行為和電化學規律.隨Cl-增加,304 L不銹鋼焊接接頭的三個區域(母材、焊縫和熱影響區)在混凝土模擬孔隙液中的自腐蝕電位、點蝕電位及電荷轉移電阻降低,鈍化膜中載流子密度和焊接接頭的點蝕坑數量增加.在同濃度的腐蝕溶液中,308 L的焊縫區域耐蝕性最佳,熱影響區次之,304 L基體表現出低的電荷轉移電阻和高的摻雜濃度使得母材的耐蝕性最差.

     

    Abstract: The pitting corrosion of 304 L austenitic stainless steel joints with 308 L austenitic stainless steel as welding sticks was investigated in simulated concrete pore solutions with different chloride ion concentrations by potentiodynamic polarization curves, electrochemical impedance spectroscopy and Mott-Schottky curves. It is found that chloride ions play an important role in the corrosion behavior of the joints. When the chloride ion concentration increases, the corrosion potential, breakdown potential and charge transfer resistance of the joints at three different weld zones, i. e., base metal (BM), weld metal (WM) and heat affected zone (HAZ), in the simulated solutions decrease, but the charge carrier density and the number of pitting sites in the joints increase. In the same simu-lated solution, the weld metal shows a better corrosion resistance, followed by the heat affected zone, and the base metal has the lowest corrosion resistance due to its much lower charge transfer resistance and higher doping content.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164