<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

硼鋼熱沖壓微觀組織仿真及力學性能預測

Microstructure simulation and mechanical property prediction of boron steel during hot stamping

  • 摘要: 基于Johnson-Mehl-Avrami相變動力學模型和Koistinen-Marburger方程,建立了硼鋼22Mn B5車門防撞梁熱沖壓過程的熱機械-相變耦合有限元模型,得到了車門防撞梁熱沖壓過程中板料溫度、微觀組織及維氏硬度的分布特征,研究了保壓壓力和保壓時間對防撞梁熱沖壓零件的性能影響.仿真結果表明:車門防撞梁頂部冷卻速度為137.3℃·s-1,側壁冷卻速度為69.8℃·s-1,冷卻速度決定了防撞梁各個部位的微觀組織和維氏硬度;隨著保壓壓力的增大,獲得95%以上馬氏體的防撞梁的保壓時間縮短,可加快生產節拍.進行了防撞梁熱沖壓試驗,對微觀組織及維氏顯微硬度進行了檢測.結果表明:車門防撞梁保壓10 s后,頂部及側壁均已轉化為板條狀馬氏體組織,且頂部硬度為508 HV,側壁硬度為474 HV.

     

    Abstract: Based on the Johnson-Mehl-Avrami type kinetics equations and the Koistinen-Marburger equation,a fully coupled thermomechanical-metallurgical finite element model was established for a door anti-collusion bumper of boron steel 22 Mn B5 in hot stamping. The characteristics of temperature,microstructure and hardness distribution on the door anti-collusion bumper were investigated. The effects of holding force and holding time on the microstructure and mechanical properties of door anti-collusion bumper hot stamped parts were also analyzed. Simulation results indicate that the cooling rate of the top is 137.3℃·s-1 and the cooling rate of the side wall is 69.8℃·s-1. Different cooling rates lead to different microstructure and hardness distributions on the door anti-collusion bumper. With the increasing of holding force,the holding time when the door anti-collusion bumper gets 95% martensite can be shorten,and this can speed up the production efficiency. In addition,we analyzed the microstructure and hardness at the top and side wall of the door anti-collusion bumper. Experimental results show that when the holding time is 10 s,the top and side wall transfer to fully lath martensite,and the hardness at the top is about 508 HV,higher than that at the side wall of 474 HV.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164