<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

低碳鋼中納米尺寸碳化物的相間析出行為

Interphase precipitation behavior of nano-sized carbides in low carbon steel

  • 摘要: 采用掃描電鏡和透射電子顯微鏡對低碳Ti-Mo系的熱軋板進行了組織分析,同時對其中的納米粒子析出行為進行了研究.強化機理分析表明析出強化對于屈服強度的貢獻值可達291 MPa.隨著卷取溫度的降低,納米粒子相間析出的排間距會減小,相間析出的排間距與其在鐵素體中形核點位置有一定的離散值,但基本上呈一定的固定值.α/γ界面的觀察和采用不同理論的計算結果表明相間析出的產生主要與α/γ界面的臺階形成有關,相間析出的排間距大小由臺階高度、晶界擴散系數、等溫溫度、臺階面遷移速率等決定.

     

    Abstract: The microstructures of hot rolled Ti-Mo-bearing low-carbon steel and its precipitation characterization of nano-sized carbides were studied by scanning electron microscopy and transmission electron microscopy. It is shown that precipitation strengthening due to nano-sized carbides is estimated to be approximately 291 MPa. The row spacing of interphase precipitation decreases with the drop of isothermal holding temperature. Though the row spacing of interphase precipitation in ferrite shows a relatively small scatter,it tends to be almost constant against distance from the center of ferrite transformed at different holding temperatures. The observed α/γ interfacial microstructure and interphase precipitation simulation by different theories indicate that this interphase precipitation has a close relationship with the formation of mobile ledges,and the row spacing of interphase precipitation is determined by factors such as ledge height,boundary diffusion coefficient,holding temperature,and ledge velocity.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164