<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

考慮圍巖松動圈支護體影響的深埋圓形隧道襯砌優化設計

Lining support optimization design of a deep-buried tunnel in consideration of the broken rock zone support

  • 摘要: 首先考慮圍巖松動圈支護體的影響,在完全接觸條件下,根據彈塑性力學理論,推導出深埋圓形隧道每層襯砌切向應力和徑向應力分量的解析解;然后根據混凝土和圍巖材料受力狀態的不同,選用不同的破壞準則,引入功能梯度材料思想,構建了不同彈性模量雙層混凝土圓形襯砌優化設計的目標函數,即當目標函數為最小值時,Ⅰ、Ⅱ和Ⅲ層結構同時接近或達到預設破壞狀態,在設計上才最為合理;最后對襯砌材料的彈性模量和襯砌厚度分別進行了優化設計.算例分析表明:(1)隨著圍巖應力的增大,E2/E1E2/E3都減小.在相同大小的圍巖應力作用下,總有E2/E1<E2/E3,故而建議設計時Ⅰ層襯砌的彈性模量應大于圍巖松動圈支護體的彈性模量.(2)隨著圍巖應力的增大,Ⅰ層襯砌的厚度增大.在相同大小的圍巖應力作用下,當E2/E1>E2/E3時所求得的Ⅰ層襯砌最優厚度總是小于E2/E1<E2/E3時所求得的Ⅰ層襯砌厚度,故而可通過改變Ⅰ層襯砌和圍巖松動圈支護體的彈性模量相對大小來調整Ⅰ、Ⅱ層襯砌的厚度.

     

    Abstract: Considering the broken rock zone support,tangential and radial stress component analytical solutions of each layer in full contact conditions are deduced in a deep circular tunnel based on the elastoplastic theory. Then an optimization objective function of circular concrete lining layers with different elastic moduli is constructed by choosing different failure criteria and different stress states of concrete and rock materials and by introducing the idea of functionally graded materials,that is,when the objective function is minimum,the most reasonable design is that the Ⅰ,Ⅱ and Ⅲ layer structures destroy at the same time. Finally,the elastic modulus and thickness of the lining is designed separately. The analysis of examples shows the following.(1) With the increase of surrounding rock stress,E2/E1 and E2/E3 both decrease. Under the same stress,there is always E2/E1 E2/E3,therefore it is suggested that the elastic modulus of the Ⅰ layer should be greater than the broken rock zone supporting's.(2) With the increase of surrounding rock stress,the thickness of the Ⅰ layer increases. Under the same stress,when E2/E1 E2/E3,the thickness of the Ⅰ layer is always less than that obtained when E2/E1 E2/E3,therefore the thicknesses of the Ⅰ and Ⅱ layers can be adjusted by changing the elastic moduli of the Ⅰ layer and the broken rock zone support.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164