<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

復雜采空區激光掃描拼合散亂點云球面投影三角剖分算法

Spherical projection triangulation algorithm for laser-scanning splice unorganized points of complex goafs

  • 摘要: 利用三維激光掃描技術對采空區進行探測以建立三維可視化模型,從而準確獲取其三維空間位置和形態,是礦山采空區事故隱患綜合治理工作中的重要環節.但由于采空區形態復雜,往往需要從多個方位對其進行多次探測才能準確獲取采空區完整的三維形態.如何對多次探測點云數據拼合后的散亂點云構建三角網格模型,是實現復雜采空區三維探測建模的關鍵.本文提出了采空區激光掃描拼合散亂點云數據球面投影三角剖分生長算法,首先選定球心將原位點云投影到球面上得到投影點云,然后對投影點云進行三角剖分,最后將投影點云三角網空間拓撲關系還原到原位點云,從而構建復雜采空區三角網模型.為了有效實現算法,研究了球面投影參數設定、XYZ三向單元柵格點云搜索策略、三角形生成規則、優勢頂點邊界切分策略、邊界閉合策略、不規則三角形優化策略等多種方法.實際應用表明,所研究的算法能夠生成優質的采空區三角網模型,為實現復雜采空區三維精確建模及可視化管理提供了重要技術支持.

     

    Abstract: Detection of a goaf by laser-scan technology to build a 3D visualized model and to obtain the goaf's 3D space position and shape, is an important part for comprehensive management of the goaf's accidents. Multiple probes from multiple orientations are usually needed to obtain a goaf's 3D shape because of its complexity. How to construct a triangular mesh model from splice unorganized points by multiple probes is the key technology of a goaf's 3D modeling. A spherical projection triangulation algorithm is proposed for laser-scanning splice unorganized points of a goaf in this paper. Firstly, projected points are got by a chosen sphere center and projecting in-situ points onto the sphere. Secondly, the projected points are triangularized completely. Then topological relations are reverted from the projected points to the in-situ points. At last, a triangular mesh model of the goaf is constructed. In order to effectively implement the algorithm, many methods are studied such as the spherical projection parameters setting, XYZ-orientation cell grid points searching strategy, triangle generation rules, boundary segment strategy by advantage vertexes, boundary closure strategy, and irregular triangle optimization strategy. Applications show that the algorithm can generate a high quality triangular mesh model and provide technical support for accurate 3D modeling and visualized management of a goaf.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164