<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于模糊C均值聚類和圖形技術的結構面產狀分析方法

FCM and graphics technique based method for discontinuities occurrence analysis

  • 摘要: 針對傳統的利用極點等密度圖和玫瑰圖的結構面分組方法主觀性強和聚類分析方法不夠直觀的缺點,建議利用模糊C均值(FCM)聚類的隸屬度的結果,結合圖形技術繪制隸屬度等值線圖來進行結構面分組.隸屬度等值線圖充分利用了模糊C均值聚類中隸屬度的信息,展現每個聚類的隸屬度的空間分布規律,并且可以分辨出因隨機因素形成的結構面,還可以直觀地讀出聚類中心的范圍.三山島金礦的實例證明,該方法同時具有傳統方法直觀和聚類分析方法客觀的優點,并且能夠適應優勢組不明顯的數據.

     

    Abstract: To solve the disadvantages of strong subjectivity for traditional plot methods of grouping discontinuities, such as the pole isodensity map and the occurrence rose graph, and the lack of intuitionism for popular clustering methods, this article introduces a plot method called the membership contour map. Based on the data of the membership matrix obtained through the fuzzy C-mean (FCM) algorithm, the membership contour map is realized by a graphics technique. Due to the full use of membership information in FCM clustering, the membership contour map can show the spatial distribution of the membership degree of each clustering, distinguish discontinuities caused by trivial random factors, and read out clustering centers by the scope form from the membership contour map directly. An application of Sanshandao Gold Mine proves that the membership contour map holds the advantages of both intuitionism and objectivity, and can adapt discontinuities data, which do not have obvious dominant groups.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164