<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

地下煤火燃空區冒落巖體孔隙率隨機分布規律

Random distribution of porosity in the combustion space area of underground coal fire

  • 摘要: 本文經隨機實驗統計分析得出孔隙率函數(3lnφ-2ln(1-φ))近似服從正態分布,在實驗的粒徑范圍內(30~180 mm),其期望值和方差都隨著巖塊粒徑的增大而增大.在推導出巖層二維下沉曲面方程的基礎上,先后推演出燃空區冒落巖體孔隙率的連續非均質分布模型和隨機離散化非均質分布模型.依據模型計算矩形煤火空間得出以下結果:燃空區淺部及邊緣側冒落巖體的孔隙率大,而中間區域孔隙率小;孔隙率等值線在x-y平面上的投影呈側躺的"U"形分布;沿x軸,隨著深入燃空區距離的增加,孔隙率呈類負指數形式衰減.此外,孔隙率連續分布和隨機離散化分布,在整體的變化趨勢上是相同的,區別之處在于后者所表示的孔隙率具有一定的隨機波動性.將上述隨機離散化模型應用在某火區溫度場的數值模擬中,并經現場紅外測溫驗證了模擬的準確性和孔隙率模型的適用性.

     

    Abstract: Through statistical analysis of random experiments, there is a function of porosity 3lnφ-2ln(1-φ) that approximately follows a normal distribution. In the test particle size range of 30 to 180 ram, the expectation and variance of this function value increase with an increase in grain size of rock blocks. On the basis of deriving the subsidence hypersurface equation of a basic roof, a continuous inhomogeneous distribution model and a random inhomogeneous distribution model of porosity in the combustion space area (CSA) are deduced. For a rectangular coal fire space, the porosity in the shallow and edge side of CSA is large, but in the middle region is small. In the x-y plane, the porosity contour appears a side lying U-shaped distribution, and the porosity presents negative exponent attenuation with an increase in distance entering CSA along the x axis. In addition, the overall trend of the porosity of continuous distribution and random distribution is the same, but the difference is that the porosity described by the random distribution model has a certain stochastic volatility. The random distribution model of porosity has been used in a numerical simulation of the temperature field in a fire zone, and the accuracy of simulation and the applicability of this porosity model are verified by infrared temperature measurements.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164