<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

燒結礦應用于化學鏈燃燒的反應特性

Reaction characteristics of sintering ore used as an oxygen carrier in chemical looping combustion

  • 摘要: 本文通過熱重實驗研究了燒結礦作為載氧體的H2還原反應特性,將其與通過溶解法制備的Fe2O3/Al2O3載氧體進行了氧化還原反應性比較,在500~1250℃范圍內研究了溫度對于燒結礦還原反應過程的影響,在950℃下進行了30次循環反應實驗,采用四種模型進行了反應動力學分析.結果表明,燒結礦的H2還原轉化率大于80%,可以完全再氧化,并具有良好的循環反應性能.在500~950℃范圍內,隨溫度升高還原反應速率及最終轉化率都顯著增加;而當溫度高于1100℃時,在反應后期還原反應速率和最終轉化率有下降的趨勢.在500~950℃范圍內,對燒結礦的還原過程第一反應階段(Fe2O3-Fe3O4/FeO,還原轉化率< 25%)可采用二階反應模型(M2)擬合,得到表觀活化能為E=36.018 kJ·mol-1,指前因子為A0=1.053×10-2 s -1;第二反應階段(Fe3O4/FeO-Fe,還原轉化率> 25%)采用收縮核模型(M4)擬合,得到的表觀活化能為E=51.176 kJ·mol-1,指前因子為A0=1.066×10-2 s -1.

     

    Abstract: The reduction kinetics of sintering ore used as an oxygen carrier in the chemical looping combustion was experimentally investigated by thermogravimetry. The redox reactivity of sintering ore was compared with that of self-made Fe2O3/Al2O3 oxygen carriers prepared by the dissolution method. Experiments were conducted on the reduction of sintering ore by diluted hydrogen during the temperature range of 500 to 1250℃, and 30 cycles of redox reaction experiments were performed at 950℃. Experimental data was analyzed by four kinetic models. It is found that sintering ore can be used as an oxygen carrier with a reduction conversion larger than 80%, complete oxidization, and a good performance of recyclability. The reduction reaction rate and final fractional conversion of sintering ore both increase with rising temperature from 500℃ to 950℃, while both have a trend of decline when the temperature is above 1100℃. The second order reaction model (M2) can properly fit the experimental data of the reduction of sintering ore in the first reaction stage (Fe2O3-Fe3O4/FeO, reduction conversion X < 25%) during the temperature range of 500 to 950℃, achieving the apparent activation energy E=36.018 kJ·mol-1 and the pre-exponential factor A0=1.053×10-2 s-1, whereas the shrinking core model (M4) fits well in the second reaction stage (Fe3O4/FeO-Fe, reduction conversion X > 25%), achieving the apparent activation energy E=51.176 kJ·mol-1 and the pre-exponential factor A0=1.066×10-2 s-1.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164