<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

FGH96合金雙道次熱變形及其熱加工圖

Flow behavior and processing map of FGH96 superalloy during two-pass hot deformation

  • 摘要: 采用Gleeble-1500熱模擬試驗機對FGH96合金進行雙道次真應變量為0.6+0.6和0.3+0.9的等溫間斷熱壓縮試驗,研究了變形溫度為1050~1125℃、變形速率為0.001~0.1 s-1時合金的熱變形行為和組織演變.熱變形過程中合金發生了再結晶,第一道次較小的真應變量減輕了合金的開裂.當第一道次真應變量小時,隨著溫度和變形速率的上升,合金道次間再結晶軟化率增加.不同應變量以及不同道次真應變量均對合金熱加工圖產生明顯影響.在相同變形條件下,當能量耗散率隨應變量的增加而下降時,合金中組織由細晶向粗晶轉變,反之則由粗晶向細晶轉變;當能量耗散率不隨應變量的變化而變化時,能量耗散率低于20%的合金中出現大量的不完全再結晶組織,能量耗散率高于35%的合金中出現細小完全再結晶組織.

     

    Abstract: Isothermal interrupted hot compression tests of FGH96 superalloy at the two-pass strains of 0.6 + 0.6 and 0.3 + 0.9 were performed on a Gleeble-1500 thermo-mechanical simulator. The hot deformation behavior and microstructural evolution of the superalloy were investigated in the deformation temperature range of 1050 to 1125℃ and the strain rate range of 0.001 to 0.1 s-1. It is found that recrystallization happens during the two-pass hot deformation, and less deformation in the first pass results in less cracks in samples. As the first-pass hot deformation is less, the recrystallization degree increases during the deformation gap with increasing deformation temperature and strain rate. An obviously change is found in the processing map with different strains or different two-pass strains. Under the same deformation condition, when the energy dissipation rate changes with strain, different microstructural evolution rules happen. When the energy dissipation rate decreases with increasing strain, the recrystallization grains coarsen; otherwise, the recrystallization grains refine. But when the energy dissipation rate does not change with strain, coarse grains appear with the energy dissipation rate lower than 20% or a fine grain microstructure appears with the energy dissipation rate higher than 35%.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164