<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

250t鋼包底吹氬精煉工藝優化的物理模擬

Physical simulation of refining process optimization for bottom argon blowing in a 250 t ladle

  • 摘要: 以250t底吹氬鋼包為原形,根據相似原理進行水模型實驗,研究了不同透氣磚布置參數、吹氬量、加料位置及透氣磚透氣性能變化對精煉效果的影響.結果表明:0.75R(透氣磚在距鋼包底部中心為0.75倍鋼包底部半徑R的位置)的雙透氣磚布置較0.64R、0.5R混勻時間短,但對包壁的沖刷嚴重;雙透氣磚大夾角(135°、180°)布置比小夾角(45°、90°)混勻時間短,0.64R-180°的雙透氣磚對稱布置方案最優.在透氣磚上方或雙透氣磚連線中垂線區域內添加物料,混勻時間最短;吹氣量控制在67~70m3/h之間,可充分利用氣體的攪拌能量,滿足混勻時間短且不會產生卷渣的潔凈鋼精煉要求;透氣磚堵塞較雙孔正常吹氣混勻時間延長,頂部鋼液形成兩個大小不一的裸露亮圈,并加重對包壁耐材的沖刷與侵蝕,降低鋼液的混均效果及鋼的潔凈度.

     

    Abstract: The influence of different permeable brick layout parameters,gas flowrate,feeding location and change in permeability of permeable bricks,on the refining effect was investigated by using water model experiment according to the prototype of a 250 t ladle with bottom argon blowing. It is shown that the mixing time of liquid steel with an arrangement of two permeable bricks at 0.75R(the position from the center of the ladle bottom to permeable bricks is 0.75 times the radius R of the ladle bottom) is shorter than that of permeable brick arrangements at 0.64 R and 0.5R,but this permeable brick arrangement results in a serious erosion of the ladle wall.Moreover,the mixing time of liquid steel with an arrangement of two permeable bricks at larger angles(135°,180°) is shorter than that at smaller angles(45°,90°). Thus the 0.64R-180° arrangement of two permeable bricks is the optimal solution. When material for liquid steel refining is added above permeable bricks or in the perpendicular bisector zone of the connection line of two permeable bricks,the mixing time of liquid steel is the shortest. The optimal bottom gas-blowing flowrate is 67 to 70 m3·h-1,which can meet the clean steel production requirement,i. e.,the mixing time of liquid steel is short,slag entrapment can be avoided,and the gas mixing energy can fully be used. The mixing time of liquid steel under the condition of permeable brick clogging prolongs and two bare bright circles with different sizes form in top liquid steel,which increases the erosion of the ladle wall refractory and reduce the mixing effect and cleanliness of liquid steel.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164