<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

橢圓形鋼包底吹氬的流動特征

Flow characteristics of argon bottom blowing in an ellipse ladle

  • 摘要: 以一種150t橢圓形鋼包為原型建立1:4的鋼包水模型,在相似原理基礎上,以氮氣模擬現場用氬氣進行底吹,以水模擬鋼液,進行水模型實驗.分析了底吹氣孔位置、吹氣量對鋼液混勻及流動的影響.結果表明:原型方案兩吹氣孔位置距離近,相互干擾性強,動能耗散大,影響鋼液攪拌效果.底吹氣量存在臨界值(327.6L·h-1),超過臨界值后氣量增加的動能主要消耗在鼓動液面和吹開渣面上,對鋼液混勻的效果較小.優化后兩底吹氣孔分別位于長軸0.6R處,呈180°分布,優化后鋼液混勻時間整體下降,相同吹氣量下混勻效果更好.采用優化后方案,相同吹氣量下鋼液面裸露面積大大降低,減少了鋼液二次氧化,鈣處理過程全氧從58×10-6降低到47×10-6,軟吹過程平均增N量<3×10-6.

     

    Abstract: The blowing hole location and the gas flow in a 150 t elliptic ladle were optimized by establishing a 1:4 water model.Based on the similarity criterion,high pressure nitrogen was used to simulate argon in the water modelling experiment. Experimental results show that the mixing of liquid steel is weak in the original ladle because the two blowing holes are close to each other. A critical gas flow exists at different locations. Beyond the critical value,the increase in kinetic energy mainly is used to stir liquid steel and blow the slag surface. After optimization,the two blowing holes distribute in 180° and are arranged at the 0.6 radius of the major axis respectively. The mixing time of liquid steel shortens and the exposed area of liquid steel reduces greatly compared with the original ladle with the same gas flow. Moreover,the total oxygen decreases to 47×10-6 from 58×10-6 during calcium treatment,and the average nitrogen pick-up amount is less than 3×10-6 during the soft stirring process.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164