<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于共享最近鄰密度的演化數據流聚類算法

Evolving data stream clustering algorithm based on the shared nearest neighbor density

  • 摘要: 現有的基于密度的數據流聚類算法難于發現密度不同的簇,難于區分由若干數據對象橋接的簇和離群點.本文提出了一種基于共享最近鄰密度的演化數據流聚類算法.在此算法中,基于共享最近鄰圖定義了共享最近鄰密度,結合數據對象被類似的最近鄰對象包圍的程度和被其周圍對象需要的程度這兩個環境因素,使聚類結果不受密度變化的影響.定義了數據對象的平均距離和簇密度,以識別離群點和簇間的橋接.設計了滑動窗口模型下數據流更新算法,維護共享最近鄰圖中簇的更新.理論分析和實驗結果驗證了算法的聚類效果和聚類質量.

     

    Abstract: Existing density-based data stream clustering algorithms are difficult to discover clusters with different densities and to distinguish clusters with bridges and the outliers. A novel stream clustering algorithm was proposed based on the shared nearest neighbor density. In this algorithm, the shared nearest neighbor density was defined based on the shared nearest neighbor graph, which considered the degree of data object surrounded by the nearest neighbors and the degree of data object demanded by around data objects. So the clustering result was not influenced by the density variation. The average distance of data object and the cluster density were defined to identify outliers and clusters with bridges. The updating algorithm over the sliding window was designed to maintain the renewal of clusters on the shared nearest neighbor graph. Theoretical analysis and experimental results demonstrate the performance of clustering effect and a better clustering quality.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164