<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

模糊時序與支持向量機建模相結合的PM2.5質量濃度預測

Prediction model of PM2.5 mass concentrations based on fuzzy time series and support vector machine

  • 摘要: 為解決進行PM2.5質量濃度預測中多因素回歸模型的不穩定、神經網絡模型的過擬合及局部最小等問題,提出應用支持向量機和模糊粒化時間序列相結合的方法,對PM2.5質量濃度未來變化趨勢和范圍進行預測.根據PM2.5不同季節的日變化周期模式,確定以24 h為周期的粒化窗寬,利用三角型隸屬函數對數據樣本進行特征提取作為支持向量機的輸入,并在k重交叉驗證法下采用網格劃分尋找出模型的最佳參數.以2013年3月—2014年2月北京市海淀區萬柳監測點四個季節PM2.5的1 h質量濃度監測值為樣本數據,應用該方法建立PM2.5質量濃度的時間序列預測模型,并在MATLAB平臺下應用LIBSVM工具實現計算過程.結果表明,基于模糊粒化時間序列的預測模型,能較好解決PM2.5機理性建模方式下由于影響因素考慮不全而造成的預測結果不穩定,對模糊粒子擬合效果較好.

     

    Abstract: To solve the instability of multiple-factor regression models and the existence of over-learning and local minima of neural network models in predicting PM2.5 mass concentration,a method was proposed by combining support vector machine with fuzzy granulation of time series to predict the variation trend and range of PM2.5 mass concentration. According to the daily periodic variation of PM2.5 in different seasons,a 24-h pattern was determined to be the window length of granulating. Feature extraction of data samples proceeded by a triangular membership function was applied to support vector machine inputs for regressive modeling,and the optimum parameters of models were selected by grid search based on k-fold cross validation. Then a time series prediction model was established by using 1-h PM2.5 mass concentration obtained by Wanliu monitoring station at Haidian district of Beijing in 4 seasons from March 2013 to February 2014,and its resolving was realized by LIBSVM tool in MATLAB platform. The results show that the prediction model of PM2.5 mass concentration based on fuzzy granulation of time series can solve the instability caused by uncertain factors in mechanism modeling and get a good fitting effect on fuzzy granulation parameters.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164