<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

金礦浮選回收率預測模型

Prediction model of floatation recovery ratio for a gold mine

  • 摘要: 浮選回收率是金礦選礦過程重要的生產指標,目前主要是通過人工化驗的方法檢測獲得,人工檢測周期較長,造成金礦廠不能及時把握浮選工藝水平.在大量現場生產數據的基礎上,分別采用多元線性回歸和BP神經網絡的方法,建立了金礦廠浮選回收率的預測模型.預測誤差分析表明,BP神經網絡預測模型能較好地預測金礦廠的浮選回收率,當預測相對誤差在±3%范圍內時,模型的預測精度達到91%,對于實際生產具有良好的參考作用.

     

    Abstract: As an important production index in the present gold-mine beneficiation process, floatation recovery ratio is mainly ob-tained by laboratory test, which has long cycle time and is hard for the staff to control the flotation process standard. Based on massive actual production data, two prediction models of floatation recovery ratio for a gold mine were established respectively by using multiple linear regression and BP neural network method. By analyzing the predictive errors of the two models, it is approved that the prediction model based on BP neural networks can provide a better accuracy. When the relative prediction errors are within ±3%, the prediction accuracy reaches 91%, thus applying a good reference for practical production.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164