<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

鍍層對金剛石/玻璃復合材料性能的影響

Effect of surface coatings on the properties of diamond/glass composites

  • 摘要: 為滿足現代電子工業日益增長的散熱需求,急需研究和開發新型高導熱陶瓷(玻璃)基復合材料,而改善復合材料中增強相與基體的界面結合狀況是提高復合材料熱導率的重要途徑.本文在對金剛石和鍍Cr金剛石進行鍍Cu和控制氧化的基礎上,利用放電等離子燒結方法制備了不同的金剛石增強玻璃基復合材料,并觀察了其微觀形貌和界面結合狀況,測定了復合材料的熱導率.實驗結果表明:復合材料中金剛石顆粒均勻分布于玻璃基體中,Cu/金剛石界面和Cr/Cu界面分別是兩種復合材料中結合最弱的界面;復合材料的熱導率隨著金剛石體積分數的增加而增加;金剛石/玻璃復合材料的熱導率隨著鍍Cu層厚度的增加而降低,由于鍍Cr層實現了與金剛石的化學結合以及Cr在Cu層中的擴散,鍍Cr金剛石/玻璃復合材料的熱導率隨著鍍Cu層厚度的增加而增加.當金剛石粒徑為100μm、體積分數為70%及鍍Cu層厚度為約1.59μm時,復合材料的熱導率最高達到約91.0 W·m-1·K-1.

     

    Abstract: It is emergent to study and develop new ceramic (glass) matrix composites with high thermal conductivity. Improving the bonding condition of the interface between the matrix and reinforcement is an important way to increase the thermal conductivity of these composites. Based on copper plating and controlled oxidation of diamond particles and Cr-coated diamond particles, diamond reinforced glass matrix composites were successfully synthesized by spark plasma sintering (SPS). Their micro-morphology, interface bonding condition and thermal conductivity were investigated. It is shown that diamond particles are distributed in the glass matrix uniformly, while the Cu/diamond interface and Cr/Cu interface are the weakest bonding interface in the two types of composites, respectively. The thermal conductivity of these composites increases with increasing diamond content. The thermal conductivity of the diamond/glass composites decreases with increasing Cu coating thickness; because of chemical bonding between Cr and diamond particles and Cr diffusion in Cu coatings, the thermal conductivity of the Cr-coated diamond/glass composites increases with increasing Cu coating thickness. When the diamond particle size is 100 μm, the diamond volume fraction is 70% and the Cu coating thickness is 1.59 μm, the Cr-coated diamond/glass composite has the highest thermal conductivity about 91.0 W·m-1·K-1.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164