<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于多目標遺傳算法的工作輥溫度場計算與分析

Work roll temperature field calculation and analysis based on multi-objective genetic algorithm

  • 摘要: 等效換熱系數是熱連軋機工作輥溫度場仿真模型的核心輸入參數,多采用遺傳算法優化得到,某1800 mm 熱連軋機存在品種、規格交替軋制,等效換熱系數的準確計算比較困難.選取多組典型工藝條件下的工作輥下機后表面溫度作為優化目標,采用多目標遺傳算法進行優化,并通過改變遺傳算子有效避免了算法早熟及局部收斂等問題,獲取了具有較強適應性的等效換熱系數.仿真和實測數據的對比結果證明了優化模型的可靠性.利用仿真模型分析了主要工藝參數對工作輥熱凸度的影響,并提出同寬交替時,工作輥熱凸度隨軋制進程呈指數變化,而在品種、規格交替編排軋制工藝下相鄰帶鋼軋制時工作輥熱凸度存在6-21.8μm 的波動,且隨軋制進程趨于穩定.

     

    Abstract: Equivalent heat transfer coefficients are key input factors for work roll temperature field analysis models in hot strip rolling, and the coefficients are usually calculated with genetic algorithms, but the rolling process of alternating material and width in a work roll service period for a 1800 mm hot strip rolling mill makes the coefficients difficult to be calculated accurately. The surface temperature distributions of a serviced work roll under multiple rolling schedules were taken as the optimization goals, and the equivalent heat transfer coefficients with a higher adaptability were obtained by using a multi-objective genetic algorithm. The optimizing process was improved by changing the genetic operators, which avoided the disadvantages of premature convergence and local convergence. The optimization model was proved effectively by comparing the simulation results with measured data. The effects of rolling parameters on the thermal crown were analyzed with the optimization model. It is predicted that under alternating width rolling, the thermal crown exponentially increases; but under alternating material and width rolling schedules, the thermal crown has a fluctuation of 6 to 21.8 μm between the continuous two strips, and towards stability gradually.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164