<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

鋯摻雜TiO2負載錳鈰氧化物低溫催化還原NOx

Low-temperature catalytic reduction of nitrogen oxides over manganese-cerium composite oxides supported on zirconium-doped titanium dioxide

  • 摘要: 采用溶膠-凝膠法制備TiO2、ZrO2和不同比例TiO2-ZrO2等載體,超聲波浸漬負載一定量的Ce-Mn活性組分.通過掃描電鏡、X射線衍射、X射線光電子能譜、傅里葉變換紅外光譜和比表面積(BET)法對催化劑進行表征,并考察催化劑的氨氣低溫催化還原NOx的活性.結果表明,TiO2-ZrO2(3:1,摩爾比)載體為介孔材料,顆粒粒徑較小且高度分散,比表面積高達151 m2·g-1.由于Zr4+取代Ti4+摻雜進入TiO2晶格內,導致其晶格畸變,抑制TiO2晶型轉變,獲得了良好的熱穩定性,加之活性組分以無定形態存在,催化劑表面存在Ce3+/Ce4+氧化還原電對,從而提高催化劑的低溫催化還原活性.在550℃下焙燒的催化劑10% Ce(0.4)-Mn/TiO2-ZrO2(3:1)的活性最高,其在140℃、體積空速67000 h-1的條件下,NOx的轉化率達到99.28%.140℃時單獨通入體積分數為10%的H2O以及同時通入體積分數為10% H2O和2×10-4 SO2,催化劑顯示出較強的抗H2O和SO2中毒能力.

     

    Abstract: Carriers of TiO2, ZrO2 and TiO2-ZrO2 with different ratios were prepared by sol-gel method. Some manganese-cerium (Mn-Ce) active components were loaded on these carriers by ultrasonic immersion. The catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, and Brunauer-Emmett-Teller (BET) method. The activity of the catalysts was studied under the condition of low-temperature catalytic reduction of NOx with ammonia as a reductant. The results show that the TiO2-ZrO2 (3:1, molar ratio) carrier was a mesoporous material, the particle size is smaller, the particles are highly dispersed, and the specific surface area reaches up to 151 m2· g-1. By doping ZrO2, Zr4+ ions replace Ti4+ ions and enter the lattice, leading to TiO2 lattice distortion. The addition of ZrO2 inhibits crystal transfer from anatase to rutile phase, and so the thermal stability of this carrier improves. Furthermore, the active components mainly exist in amorphous state and the Ce3+/Ce4+ redox couple appears on the carrier surface, thus the catalytic reduction activity at low temperature improves. The highest activity of the 10% Ce(0.4)-Mn/TiO2-ZrO2 (3:1) catalyst is obtained under calcination at 550℃. At 140℃ and a space velocity of 67000 h-1, the conversion rate of NOx reaches 99.28%. The 10% Ce(0.4)-Mn/TiO2-ZrO2 (3:1) catalyst provides strong anti-poisoning capacity to H2O and SO2 in the presence of 10% H2O alone, or 10% H2O with 2×10-4 SO2 at 140℃.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164