<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

18Mn18Cr高氮鋼析出相特征及形成機制

Characteristics and forming mechanism of precipitates in 18Mn18Cr high nitrogen steel

  • 摘要: 通過金相顯微鏡、掃描電鏡、電子探針顯微分析、透射電鏡及熱力學計算軟件研究C和N含量對鑄態及時效態18Mn18Cr高氮鋼析出相特征及形成機制的影響.研究發現在鑄態,隨C/N質量比降低,析出相依次為Cr23C6相、σ相和Cr2N相.增加C或N含量可分別促進Cr23C6相和Cr2N相析出.C和N含量影響實驗鋼凝固模式及不穩定鐵素體相共析分解產物.18Mn18Cr0.44N鋼凝固模式為AF模式,不穩定鐵素體相共析分解反應為δ→σ+γ2(0.025% C)和δ→γ2+Cr23(CxNy6x/y>1)(0.16% C);18Mn18Cr0.72N鋼凝固模式為A模式,晶界處存在少量顆粒狀Cr2N相.在固溶時效態,實驗鋼僅析出片層狀的Cr2N0.39C0.61相.隨C+N含量增加,片層狀析出相體積分數和片層間隙增加,析出孕育時間減少.

     

    Abstract: The effects of carbon and nitrogen contents on the characteristics and forming mechanism of precipitates in as-cast and aged 18Mn18Cr high nitrogen steels were investigated by optical microscopy, scanning electron microscopy, electron probe micro-analysis, transmission electron microscopy and thermodynamics calculation (Thermo-Calc). It is found that with the decrease in mass ratio of C to N, the precipitate is Cr23C6 phase, σ phase and Cr2N phase in the as-cast steel in turn. The precipitation of Cr23C6 and Cr2N phase increases as the C or N content increases. C and N contents influence the solidification mode of the tested steel and the eutectoid decomposition of the unstable ferrite phase. The solidification mode of 18Mn18Cr0. 44N steel is an AF mode, and the eutectoid decomposition reactions corresponding to the C contents of 0. 025% and 0. 16% are δ→σ + γ2 (0. 025% C) and δ→γ2 + Cr23 (CxNy)6 (x/y〉 1) (0. 16% C), respectively. The solidification mode of 18Mn18Cr0. 72N steel is an A mode, and a little granular Cr2N phases precipitate on grain boundaries. Only laminar Cr2N0. 39C0.61phase exits in the aged steel, and with the increase of C + N content, the volume fraction and lamellar spacing of the precipitates increase, but the incubation time decreases.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164