<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

考慮固壁作用力的微可壓縮流體納微米圓管流動分析

Analysis of weakly compressible fluid flow in nano/micro-size circular tubes considering solid wall force

  • 摘要: 針對流體在納微米尺度下的流體流動規律不符合泊肅葉規律的理論依據不足的難題,研究了納微米圓管中流體的流動,將流體的微可壓縮和固壁對流體的作用同時考慮進來,并將固壁對流體的作用采用固壁作用力的形式引入到流體力學方程,采用渦函數流函數將方程解耦,并用正則攝動法求得一階精度的壓力和速度的解析解.結果發現:固壁作用力導致零階徑向壓力的出現,一階壓力的增強和一階速度的降低;量綱一的體積流量偏離了不可壓縮流體的體積流量,偏離效應受流體的微可壓縮性和固壁作用力的共同影響.體積流量在同尺度下偏離泊肅葉流動的流量大小隨著可壓縮系數和流體中和壁面產生作用的離子濃度增大而增大,隨著納微米圓管管徑減小而增大,納微米圓管管徑低于某一尺寸時,流體將不能流動.通過研究表明:納微米尺度下產生微尺度效應的原因是流體的微可壓縮性和壁面力的共同影響.

     

    Abstract: Aiming at the problem that fluid flow in nano/micro-size tubes deviates from the Hagen-Poiseuille law but the mechanism remains unclear to date, this paper focuses on fluid flowing in a nano/micro-size circular tube considering the weak compressibility of the fluid and the tube wall action. The tube wall action was introduced into the momentum equations as a wall force, the hydrodynamic vorticity-stream equations were derived, and the first-order perturbation solutions of pressure and velocity were obtained. It is found that there exists zero-order radial pressure. Due to the influence of wall-fluid interaction, the first-order radial pressure increases and the first-order velocity decreases. The dimensionless volume flow rate deviates from an uncompressible fluid due to the compressibility of the fluid and the tube wall force. The deviation of the dimensionless volume flow rate from Poiseuille flow increases with the increasing of compressible coefficient and ion concentration in the liquid acted with the tube wall, and increases with the decreasing of the tube diameter. The liquid cannot flow when the tube diameter is less than a certain size. This paper reveals that the mirco-scale effect of nano/micro-size is resulted from the compressibility of the fluid and the tube wall force together.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164