<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

三價鉻超聲-脈沖電沉積Fe-Ni-Cr/SiC納米復合鍍層

Pulse electrodeposition of nano Fe-Ni-Cr/SiC composite coatings from trivalent chromium baths in ultrasonic fields

  • 摘要: 利用超聲-脈沖復合電沉積法,在三價鉻鍍液體系中,添加羧酸鹽-尿素配合劑和SiC納米顆粒,制備了Fe-Ni-Cr/SiC納米復合鍍層.研究了超聲-脈沖工藝參數與SiC納米粒子復合量、Cr含量及鍍層厚度的關系;利用穩態極化曲線和循環伏安法分析了超聲波對陰極電化學行為的影響.結果表明,超聲-脈沖作用均有利于基質金屬Fe、Ni和Cr的電沉積,提高了鍍層中SiC和Cr的含量以及鍍層的厚度.利用掃描電鏡、X射線衍射儀和能譜儀對Fe-Ni-Cr/SiC納米復合鍍層的表面形貌、微觀結構和組成等進行表征,發現采用該技術可制備厚度為23.56μm,SiC和Cr質量分數分別為4.1%和25.1%的Fe-Ni-Cr/SiC納米復合鍍層.磨損量和腐蝕曲線測試結果表明,SiC含量高的復合鍍層,其耐磨性和耐蝕性更好.

     

    Abstract: Nano Fe-Ni-Cr/SiC composite coatings were prepared by using a pulse electrodeposition method from trivalent chromium baths containing a compound carboxylate-urea system and SiC nanoparticles in ultrasonic fields. The influence of pulse electrodeposition and ultrasonic parameters on the SiC and Cr contents in the composite coatings and the coating thickness was investigated, and the effect of ultrasonicwaves on the electrochemical behavior of the composite coatings was analyzed by steady-state polarization curves and cyclic voltammetry (CV) curves. It is indicated that the SiC and Cr contents in the composite coatings and the coating thickness are significantly increased since both ultrasonic waves and pulse electrodeposition are favorable to the deposition of the matrix metals Fe, Ni and Cr. The surface morphology, phase composition and chemical composition of the composite coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The composite coating with a 23.56μm thickness, 4.1% SiC and 25.1% Cr was obtained by this technique. According to the measurements of weight loss and typical potentiodynamic polarization curves, the properties such as anti-wear and corrosion resistance could be improved by increasing the SiC content in the composite coatings.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164