<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

高強度含銅鋼奧氏體連續冷卻轉變產物的強韌性

Strength and toughness of austenite decomposition products in high strength Cu-bearing steel during continuous cooling

  • 摘要: 研究了高強度含銅鋼HSLA80和HSLA100奧氏體連續冷卻轉變產物的強度和韌性隨冷卻速率的變化規律,探討了連續冷卻過程中形成的Cu沉淀的特征和熟化規律.在Gleeble3800熱模擬試驗機上進行0.1℃·s-1至20℃·s-1的連續冷卻實驗,利用掃描電鏡和透射電鏡分析了顯微組織和Cu沉淀.結果表明,隨冷卻速率提高,HSLA80的連續冷卻轉變組織由多邊形鐵素體向塊狀鐵素體和貝氏體轉變,在冷速0.1~1℃·s-1范圍內Cu發生沉淀,兩者綜合作用造成隨冷卻速率提高鋼的硬度分階段變化,而韌性逐漸提高;HSLA100的連續冷卻轉變組織以貝氏體為主,且不發生Cu的沉淀,隨冷卻速率提高鋼的硬度基本保持不變,但韌性發生劇烈變化.連續冷卻過程中形成的Cu沉淀在等溫過程中的熟化符合Ostwald熟化規律,半徑隨時效時間t1/3變化.

     

    Abstract: The effects of cooling rate on the strength and toughness of austenite decomposition products in high strength Cu-bearing steels HSLA80 and HSLA100 were investigated during continuous cooling. Characterization and ripening of Cu precipitates formed dur-ing continuous cooling were discussed. Continuous cooling experiments from 0.1 to 20℃·s-1 were carried out by Gleeble thermo-simu-lation. Microstructures and Cu precipitates were observed by scanning electron microscopy and transmission electron microscopy. It is found that the microstructure of austenite decomposition products in HSLA80 steel changes from polygonal ferrite to granular ferrite and bainite with increasing cooling rate. Cu precipitation occurs during continuous cooling within the cooling rate of 0.1 to 1℃·s-1. Due to the microstructure and Cu precipitates, the hardness changes by stages and the toughness increases gradually as the cooling rate in-creases. The microstructure of austenite decomposition products in HSLA100 steel is mainly bainite and Cu precipitation does not oc-cur, so that the hardness does not change on the whole, but the toughness varies dramatically with increasing cooling rate. Ripening of Cu precipitates formed during continuous cooling obeys the Ostwald law. The radius of Cu precipitates increases with aging time t1/3.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164