<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

西沙嚴酷海洋大氣環境下AZ31鎂合金的長周期腐蝕行為

Long-term corrosion behavior of AZ31 magnesium alloy in Xisha marine atmosphere

  • 摘要: 通過現場暴露實驗,研究了AZ31鎂合金在西沙海洋大氣環境下暴露4 a的長周期腐蝕行為.利用掃描電鏡觀察表面、截面的腐蝕產物以及去除腐蝕產物后的腐蝕形貌,并用能譜分析及X射線衍射儀對腐蝕產物的元素含量及相組成進行分析.研究結果表明,AZ31鎂合金在西沙海洋大氣環境下發生了較為嚴重的腐蝕,4 a內的平均腐蝕速度為11.95μm·a-1.Cl-和CO2在鎂合金的腐蝕過程中起著至關重要的作用.吸附液膜中的Cl-主要破壞鎂合金的保護膜,使鎂合金發生陽極溶解;而CO2則會中和陰極反應產生的堿性離子并與Mg(OH)2發生反應生成含不同結晶水的Mg5(CO34(OH)2·xH2O表層腐蝕產物.由于表層腐蝕產物阻擋了CO2和Cl-向鎂合金表面的傳輸,靠近基體處的腐蝕產物主要為Mg(OH)2.

     

    Abstract: By field exposure test, atmospheric corrosion tests of AZ31 magnesium alloy were conducted in Xisha Islands for 4 a. The surface and cross-section morphologies of corrosion products as well as the corrosion morphologies of the alloy after removing corro-sion products were observed by scanning electron microscopy. Energy dispersive X-ray spectroscopy and X-ray diffraction analysis were used to obtain the element content and phase composition of corrosion products. The results indicate that the alloy undergoes severe corrosion. The average corrosion rate is 11.95μm·a-1. Cl- and CO2 play important roles in the corrosion process. The Cl-—containing absorbed electrolyte layers will destroy the oxidation film and induce anodic dissolution of the alloy. While CO2 dissolved in the absorbed electrolyte layers tends to neutralize the alkali formed in the cathodic area and reacts with Mg (OH) 2 to form Mg5(CO3)4(OH)2·xH2O. The surface corrosion products restrict the transport of CO2 and Cl- to the surface of the alloy, so the inner layer of corrosion products is mainly composed of Mg(OH) 2.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164