<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

高鋁青銅粉體超音速等離子噴涂層感應重熔后的組織及性能

Microstructure and properties of high-aluminum bronze coatings after induction remelting prepared by supersonic plasma spraying

  • 摘要: 為了改善涂層的組織和性能,對超音速等離子噴涂技術制備的高鋁青銅涂層進行高頻感應重熔處理,研究重熔后涂層的微觀組織結構特征和界面結合狀態.感應重熔前涂層具有層流狀組織特點,含有少量氧化渣、孔隙及未完全熔融顆粒,涂層與基體間以機械結合為主.感應重熔能消除未熔顆粒和夾雜,使組織致密、均勻,組織的層流特征弱化,孔隙率有所下降.基體元素和涂層元素相互擴散,在界面形成一條明顯的白亮帶,呈冶金結合狀態,結合牢固,涂層的結合性能有所改善.重熔后擴散帶和涂層表面的硬度較高,界面結合強度也由重熔前的25.110提升至83.358 MPa.

     

    Abstract: By field exposure test, atmospheric corrosion tests of AZ31 magnesium alloy were conducted in Xisha Islands for 4 a. The surface and cross-section morphologies of corrosion products as well as the corrosion morphologies of the alloy after removing corrosion products were observed by scanning electron microscopy. Energy dispersive X-ray spectroscopy and X-ray diffraction analysis were used to obtain the element content and phase composition of corrosion products. The results indicate that the alloy undergoes severe corrosion. The average corrosion rate is 11.95μm·a-1. Cl- and CO2 play important roles in the corrosion process. The Cl-—containing absorbed electrolyte layers will destroy the oxidation film and induce anodic dissolution of the alloy. While CO2 dissolved in the absorbed electrolyte layers tends to neutralize the alkali formed in the cathodic area and reacts with Mg (OH) 2 to form Mg5(CO3)4(OH)2·xH2O. The surface corrosion products restrict the transport of CO2 and Cl- to the surface of the alloy, so the inner layer of corrosion products is mainly composed of Mg(OH) 2.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164