<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

軋制界面非穩態流體潤滑軋制特性

Fluid lubrication rolling characteristics of unsteady rolling interfaces

  • 摘要: 針對軋制過程非穩態及潤滑特性,通過流體力學分析,建立穩態、非穩態軋制變形區油膜厚度分布模型,提出油膜波動系數以研究油膜厚度的絕對波動,應用卡爾曼微分方程分析了穩態、非穩態軋制界面應力分布,并以穩態應力分布為基礎提出應力波動系數以研究變形區應力的絕對波動.結果表明:穩態下壓下率增加,軋制界面油膜變薄,壓應力、切應力均增加;非穩態下隨著入口板帶厚度等擾動因素的波動加劇,油膜波動系數變大,絕對波動加劇;不同時刻非穩態壓應力波峰的位置和數值都會發生變化;相比于切應力,油膜波動對壓應力的影響比較大,當油膜厚度發生6.33%的絕對波動時,壓應力和切應力分別產生1.17%和0.24%的絕對波動.

     

    Abstract: Based on the lubricating and unsteady properties of rolling processes and hydrodynamic analysis, a film distribution model of the deformation zone which concerns the steady and unsteady conditions is set up and the film wave coefficient is proposed which is used to study the absolute fluctuation of unsteady film thickness. The von Karman equation is used to describe the stress distribution of rolling interfaces under the steady and unsteady conditions. According to the stress distribution under the steady condition, the stress wave coefficient is proposed which is used to study and describe the absolute fluctuation of unsteady stress. It is found that large reduction results in a thinner film thickness and a larger hydrodynamic pressure and shear stress in the deformation zone under the steady condition. Under the unsteady condition, as the fluctuation of disturbance factors such as inlet strip thickness intensifies, the film wave coefficient increases, indicating that the absolute fluctuation of film thickness gets larger. The position and value of the pressure stress peak change with time under the unsteady condition. The absolute fluctuation of unsteady film thickness has a greater impact on the hydrodynamic pressure than on the shear stress. When the absolute fluctuation of film thickness is 6.33%, the pressure stress and the shear stress have a 1.17% and a 0.24% absolute fluctuation, respectively.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164