<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

氫致鋼內部疲勞裂紋萌生和擴展的有限元分析

Finite element analysis of hydrogen induced internal fatigue crack initiation and propagation in steel

  • 摘要: 對氫致鋼內部疲勞裂紋的萌生和擴展進行了數值模擬.首先用有限元法分析了氫在疲勞載荷作用下向鋼中缺陷處擴散富集的過程,然后計算得到氫含量分布結果.根據夾雜理論將氫富集區視為在缺陷附近分布的彈性夾雜,用有限元法計算得到的氫含量場求出夾雜處的應力強度因子,進而建立疲勞裂紋萌生和擴展的判據.比較了在不同加載條件下氫致疲勞裂紋萌生和擴展的規律.用梯形法修正了Sofronis和McMeeking的瞬態擴散有限元公式,發現用梯形法可以緩解加載初期較高的濃度梯度和應力梯度引起的計算結果震蕩的情況,這對于計算開裂判據是十分重要的.最后討論了提高模擬精度和改進模型的方法.

     

    Abstract: Hydrogen induced internal fatigue crack initiation and propagation in steel was studied by numerical simulation. First, finite element analysis (FEM) was used to analyze the process of hydrogen diffusion and accumulation at a defect in steel under fatigue load, and then the concentration of hydrogen was computed. According to the inclusion theory, the area where hydrogen accumulated was regarded as an elastic inclusion in the vicinity of the defect, and the concentration result of FEM analysis was used to calculate the stress intensity factor induced by the elastic inclusion. Thus a criterion of crack initiation and propagation was established. Hydrogen-induced fatigue crack initiation and propagation rules were studied under different load conditions. The FEM formula of transient diffusion deduced by Sofronis and McMeeking was adjusted with the trapezoidal rule. The trapezoidal rule reduces oscillations due to steep concentration and stress gradients after initial loading, this is very important to calculate the criterion of crack initiation and propagation. At the last, some methods of improving the simulation precision and refining model were discussed.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164