<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于精英重組的混合多目標進化算法

Elite-recombination-based hybrid multi-objective evolutionary algorithm

  • 摘要: 針對多目標進化算法搜索效率低和收斂性差的問題,提出了基于精英重組的混合多目標進化算法,將多目標優化問題分解為多個單目標優化問題單獨求解,并采用基于遺傳算法的精英重組策略將多個相異解重組生成唯一的精英解.提出區域化的種群初始化方法,改進局部搜索及群體選擇機制,采用以優化子群為核心的分組交叉策略及自適應多位變異算子,并引入基于混沌優化的重啟機制,有效克服了精英保存的固有缺陷,以及現有多目標進化算法存在的目標空間解擁擠、收斂慢、易早熟等問題.多目標測試函數的數值仿真和關鍵步驟的性能分析證明了本文算法的有效性和優越性.

     

    Abstract: Considering the bad efficiency and convergence of multi-objective evolutionary algorithms, this article introduces an elite-recombination-based hybrid multi-objective evolutionary algorithm (ERHMEA). In the algorithm, the multi-objective optimization problem was decomposed into multiple single-objective optimization problems and generated the only elite solution with the genetic-algorithm-based elite recombination strategy. Strategies such as regional population initialization, improved local search and selection mechanisms, optimized subgroup based packet crossover and adaptive multiple mutation operator, and chaos optimization based restart mechanism effectively overcome the inherent defects of elite preservation, as well as the multi-objective evolutionary algorithm (MEA) existing target space solution crowding, slow convergence, prematurity, and other issues. Multi-objective test functions analysis and experimental simulation prove the effectiveness and superiority of the proposed algorithm.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164