<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

熱重分析法研究不同添加劑對煤粉的催化燃燒

Catalytic combustion of different additives on coal studied by thermogravimetry

  • 摘要: 采用熱重分析法和統計分析方法研究了原煤及加入不同添加劑后煤粉的燃燒效果.加入質量分數為2%的MnO2、CaO和CeO2可將原煤的活化能由98.07分別降至73.73、78.50和76.45 kJ·mol-1,原煤的燃燒放熱峰溫度也隨之降低,由534.2分別降至482.7、489.4和484.9℃,但對氧化放熱峰溫度影響不明顯,兩者作用結果可將原煤氧化峰與燃燒峰對應溫度差減小約30℃.添加劑對煤粉燃燒活化能和燃燒峰溫度的影響規律符合玻爾茲曼方程擬合的函數關系,燃燒放熱峰對應溫度降低,活化能也減小,可通過煤樣差熱分析曲線中燃燒峰對應溫度值粗略估計煤樣的活化能.

     

    Abstract: The combustion process of raw coal with different additives was characterized by thermogravimetry and statistical analysis. It is found that the activation energy of raw coal can be reduced from 98.07 k J-tool-1 to 73.73, 78.50, and 76.45 kJ·mol-1 by adding MnO2, CaO, and CeO2 with the mass fraction of 2%, respectively. The exothermic peak temperatures of combustion are separately lowered from 534.2 to 482.7, 489.4, and 484.9 ℃, but the additives have little effect on the exothermic peak temperature of oxidation, leading to a 30 ℃ reduction of distance between the oxidation peak and the combustion peak. The effects of additives on the activation energy and the combustion peak accord well with the Boltzmann equation fitted through experimental data. The lower the exothermic peak temperature of combustion, the smaller the activation energy is. Thus the activation energy can be approximately evaluated from the exothermic peak temperature of combustion in the differential thermal analysis curve.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164