<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

鑄軋AZ31鎂合金的高溫拉伸性能

High temperature tensile behaviors of twin-roll cast AZ31 Mg alloy

  • 摘要: 研究了鑄軋AZ31鎂合金的高溫拉伸性能和變形機制.在300~450℃條件下,分別以恒定拉伸速率10-3 s-1和10-2 s-1進行拉伸至失效試驗,在真實應變率為2×10-4~2×10-2 s-1的范圍內進行變應變率拉伸試驗.當拉伸速率為10-2s-1時,試樣在400℃和450℃的延伸率均超過100%;當拉伸速率為10-3 s-1時,試樣在400℃和450℃的延伸率均超過200%,該條件下的應力指數n≈3,蠕變激活能Q=148.77 kJ·mol-1,變形機制為溶質牽制位錯蠕變和晶界滑移的協調機制.通過光學金相顯微鏡和掃描電子顯微鏡觀察顯示試樣斷口處存在由于發生動態再結晶和晶粒長大而形成的粗大晶粒,斷裂形式為空洞長大并連接導致的韌性斷裂.

     

    Abstract: This paper reports the high temperature tensile deformation behaviors and mechanisms of twin-roll cast AZ31 magnesium alloy. At constant temperatures ranging from 300℃ to 450℃, the elongation-to-failure test was conducted under constant tensile strain rates of 10-3 s-1 and 10-2 s-1, and the strain-rate-change tensile test was performed under strain rates from 2×10-4 s-1 to 2×10-2 s-1. The elongations of specimens at 400℃ and 450℃ are both higher than 100% when the tensile rate is 10-2 s-1. But when the tensile rate is 10-3 s-1,the elongation values at 400℃ and 450℃ are both higher than 200%, the stress exponent n is about 3, the creep activation energy Q is 148.77 kJ·mol-1, and the deformation mechanism is a collaborative mechanism of grain boundary sliding and solute-drag dislocation creep. Optical microscopy and scanning electron microscopy observations show that coarse grains develop at the failure ends due to dynamic recrystallization and grain growth, and the fracture is of a ductile pattern caused by cavity growth and interlinkage.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164