<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

高容量正極材料LiLi0.17Mn0.58Ni0.25O2的倍率性能

Rate capability of LiLi0.17Mn0.58Ni0.25O2 as high-capacity cathode materials

  • 摘要: 采用碳酸鹽共沉淀工藝,通過控制結晶合成了顯微形貌呈現較大差異的LiLi0.17Mn0.58Ni0.25O2樣品,并對樣品進行了X射線衍射、高分辨透射電鏡、場發射掃描電鏡分析以及恒電流充放電和交流阻抗測試.合成的LiLi0.17Mn0.58Ni0.25O2材料均具有良好的結晶度,可標定為α-NaFeO2結構(空間群R3m).其中,具有一次顆粒沿六方棱柱長軸方向形成"簇形"團聚的材料比其他樣品具有優異的倍率性能,在電壓范圍為2.5-4.8V,倍率分別為0.5C、1.0C和3.0C時,LiLi0.17Mn0.58Ni0.25O2材料首次放電比容量分別達到205.4、195.5和158.5mA.h·g-1,100次循環后放電比容量保持在203.5、187.2和151.2mA·h·g-1,容量保持率分別為99%、96%和95%.LiLi0.17Mn0.58Ni0.25O2材料特殊的顆粒團聚狀態降低了界面的電荷轉移阻抗,材料的倍率性能顯著提高.同時,文中對LiLi0.17Mn0.58Ni0.25O2材料在不同截止電壓下的電化學性能進行了對比分析.

     

    Abstract: A carbonate co-precipitation method was used to synthesize LiLi0.17Mn0.58Ni0.25O2 amples with different morphologies via controlling the crystal process. The LiLi0.17Mn0.58Ni0.25O2 samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), galvanostatic charge-discharge testing, and electrochemical impedance spectroscopy (EIS). It is found that the LiLi0.17Mn0.58Ni0.25O2 samples, with high crystallinity, can all be indexed as a α-NaFeO2 phase (space group R3m). Moreover, the sample with the hexagonal primary particles aggregated along with the long axis shows a much better rate capability than the other. LiLi0.17Mn0.58Ni0.25O2 delivers the initial discharge capacities of 205.4, 195.5 and 158.5 mA.h·g-1, in the voltage range of 2.5-4.8 V at the rates of 0.5C, 1.0C and 3.0C, respectively. After 100 cycles, the discharge capacities are 203.5, 187.2and 151.2 mA.h·g-1, which correspond to 99%, 96% and 95% retention of their initial capacities. The special aggregated morphology of LiLi0.17Mn0.58Ni0.25O2 particles contributes to the reduced charge transferring impedance and the improved rate capability. Additionally, the electrochemical properties of the materials in different potential windows were also comparatively studied.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164