<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

入口氣組分對質子交換膜燃料電池柴油水蒸氣重整制氫流程的影響

Influence of inlet gas components on the diesel steam reforming of proton exchange membrane fuel cells for hydrogen production

  • 摘要: 考察了Ni-Yb/γ-Al2O3(Ni 16%,Yb 5%,質量分數)催化劑,入口氣中添加不同組分(CO2、H2和CH4)對柴油低/高溫水蒸氣重整過程中轉化率及重整率的影響,以及添加CO2入口氣對質子交換膜燃料電池柴油水蒸氣重整制氫流程中后續的CO水氣變換和深度去除CO過程的影響.結果表明:入口氣中添加CO2或H2進一步提高了柴油在低溫(400~500℃)水蒸氣重整反應中的轉化率(<95%),能夠為后續的高溫(550~750℃)水蒸氣重整過程提供CH4代替柴油作為重整原料,從而顯著抑制了積碳.入口氣中添加H2對高溫水蒸氣重整有抑制作用,添加CH4不利于提高柴油轉化率.入口氣中添加CO2時,氣碳摩爾比約為0.54時柴油轉化率最佳,但重整產物中CO含量會增加,因而后續CO水汽變換過程的空速需降低以便保證CO去除率,添加CO2對最后深度去除CO過程(兩段選擇甲烷化法)無明顯影響.

     

    Abstract: This paper investigated the rates of diesel conversion and reforming over Ni-Yb/γ-Al2O3 catalyst (Ni 16%, Yb 5%) in low/high temperature diesel steam reforming with different inlet gases (CO2, H2 and CH4) as well as the influences of CO2 inlet gas on water-gas-shift and CO deep removal, which are the follow-up processes of the hydrogen production flowsheet based on diesel steam reforming for proton exchange membrane fuel cells (PEMFC). CO2 or H2 improves diesel conversion (> 95%) in low temperature (from 400 to 500℃) diesel steam reforming, which can let CH4 instead of diesel to participate high temperature (from 550 to 750℃) steam reforming, so that carbon deposition can be resisted obviously. However H2 shows depression on the high temperature steam reforming, and CH4 inlet gas depresses diesel conversion. When the molar ratio of gas to the total carbon of diesel is around 0. 54, CO2 inlet gas shows the best improvement on diesel conversion; however the CO content increases in the product gas, so the gas-hourlyspace-velocity of CO water-gas-shift should be reduced to reach the required CO removal ratio. There is no obvious influence on the two-stage methanation for CO deep removal.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164