<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于時-頻分析的步態模式自動分類

Automated classification of gait patterns based on time-frequency analysis

  • 摘要: 針對不同路況和運動模式下的高維、非線性、強耦合和高時變下肢加速度信號的識別問題,提出了一種基于時——頻分析的步態模式自動分類方案.利用三軸加速度傳感器采集運動時小腿在矢狀面、冠狀面和橫切面的加速度信號,利用五階Daubechies小波基對其進行特征提取,并采用線性判別式分析進行降維,最后利用決策樹和支持向量機對得到的精簡步態特征進行模式分類.實驗結果顯示兩種分類器的總體分類準確率均達到90%以上,個別步態分類可達到100%,驗證了特征提取和降維方法的合理性和有效性.

     

    Abstract: A general scheme for the automated classification of gait patterns based on time-frequency analysis was proposed to discriminate acceleration signals characterized by high dimension, non-linearity, strong coupling and high time-varying acquired under different terrains and motion patterns of lower limbs. A three-axis acceleration sensor was mounted on a crus to acquire acceleration signals in the sagittal, coronal and cross-sectional planes separately. By using a 5-order Daubechies wavelet base, the features were extracted from time-series acceleration signals and further dimensionally reduced by employing linear discrimination analysis (LDA). The reduced features were classified by the decision tree and the support vector machine (SVM). From experimental results, both classifiers can achieve the high classification accuracy ratio over 90% and for the specified gait the ratio can be up to 100%, indicating the rationality and effectiveness of the proposed methods for feature extraction and dimension reduction.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164