<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

彎剪型-彎曲型雙重抗側力結構體系水平位移的解析解

Analytical solutions of horizontal displacement for the dual structure consisting of flexural-shear substructures and flexural substructures

  • 摘要: 對中高層彎剪型-彎曲型雙重抗側力結構體系的水平位移計算方法進行了研究.將彎曲型子結構視為僅發生彎曲變形的懸臂墻,將彎剪型子結構視為同時發生彎曲變形和剪切變形的Timoshenko懸臂墻,在此基礎上建立了彎剪型-彎曲型雙重抗側力結構體系的位移微分方程,結合邊界條件,推導了均布荷載等三種荷載下結構的彎曲變形、剪切變形和總水平位移的解析解.探討了彎剪型-彎曲型雙重結構與剪切形-彎曲形雙重結構位移計算方法的關系.結果表明,剪切形-彎曲形雙重結構可視為彎剪型-彎曲型雙重結構在彎剪型子結構抗彎剛度取無窮大時的一種特殊表現形式.

     

    Abstract: A calculation method of horizontal displacement was studied for the dual structure consisting of flexural-shear substructures and flexural substructures.The flexural substructures are regarded as flexural cantilever walls which exhibit a predominantly flexural behavior,and the flexural-shear substructures are regarded as Timoshenko cantilever walls which exhibit a mixed flexural/shear behavior.On the basis of the above assumptions,a differential equation was established for calculating the displacement of the dual structure.With boundary conditions,the analytical solutions of the displacement,including the flexural deformation,the shear deformation and the total horizontal displacement,were derived when the dual structure was subjected to uniform loads.The relation between the dual structure consisting of flexural-shear substructures flexural substructures and that consisting of shear substructures flexural substructures was discussed,and the result shows that the later can be viewed as a special form of the former where the flexural stiffness of the flexural-shear substructures tends to infinity.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164