<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于ANFIS方法的連續定向凝固BFe10-1-1合金的壓縮流變應力模型

Compressive flow stress model of BFe10-1-1 alloy fabricated by continuous unidirectional solidification process using ANFIS

  • 摘要: 以連續定向凝固柱狀晶組織BFe10-1-1合金在應變速率為0.01~10s-1和變形溫度為25~500℃條件下的壓縮試驗所得實測數據為基礎,采用自適應神經網絡模糊推理系統(ANFIS)方法,建立了連續柱狀晶組織BFe10-1-1合金壓縮變形真應力與變形溫度、應變速率和真應變關系的預測模型.結果表明:ANFIS模型預測的流變應力值與試驗值之間的平均誤差為0.75%,均方根誤差為2.13,相關系數為0.9996,很好地反映了實際變形過程的特征,而在相同情況下采用傳統回歸模型預測的平均誤差為6.28%,表明ANFIS模型具有優良的預測精度.

     

    Abstract: Based on the compression experimental data of BFe10-1-1 alloy with continuous unidirectionally solidified columnar grains, a prediction model for the relation of true stress to temperature, strain rate and true strain was developed using an adaptive network based fuzzy inference system (ANFIS). The temperature at which the alloy was compressed was from 25 to 500℃ with the strain rate ranging from 0.01 to 10s-1. Simulation results show that the mean percentage error, root mean square error and correlation coefficient between the ANFIS model and measured data of flow stress are 0.75%, 2.13 and 0.999 6, respectively, indicating that the ANFIS model can well reflect the real feature of the alloy during practical deforming process. In comparison with the regression model, whose mean percentage error is 6.28% under the same condition, ANFIS parades more accurate prediction performance for flow stress.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164