<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

應變速率對GH625合金熱變形過程組織演變的影響

Effect of strain rate on the microstructural evolution of hot deformed GH625 superalloy

  • 摘要: 采用Gleeble-1500熱模擬試驗機,對GH625合金進行了以不同變形溫度、不同應變速率變形到真應變值為0.7的熱壓縮試驗,以研究其熱變形過程的動態再結晶組織演變.利用光學顯微鏡(OP)和透射電鏡(TEM)分析了應變速率對GH625合金熱變形過程中的組織演變及動態再結晶形核機制的影響.結果表明:應變速率?=10.0s-1時,實際變形溫度高于預設溫度,產生變形熱效應.GH625合金熱變形過程的組織演變是一個受應變速率和變形溫度控制的過程,在應變速率? ≤ 1.0s-1時,GH625合金動態再結晶晶粒的尺寸及體積分數隨著應變速率的升高而降低,動態再結晶形核機制是由晶界弓彎的不連續動態再結晶機制和亞晶旋轉的連續動態再結晶機制組成;在應變速率?=10.0s-1時,由于變形熱效應使動態再結晶晶粒的尺寸及體積分數迅速升高,動態再結晶機制則是以弓彎機形核的不連續動態再結晶機制為主.

     

    Abstract: Hot compression tests were conducted on a Gleeble-1500 simulator at a true strain of 0.7 at different temperatures and different strain rates to investigate the dynamic recrystallization behavior of GH625 superalloy. Optical microscopy (OP) and transmission electron microscopy (TEM) were employed to analyze the effect of strain rate on the microstructural evolution and nucleation mechanisms of dynamic recrystallization (DRX). The results show that the actual deformation temperature of the sample deformed at a strain rate of 10.0s-1 is higher than the preset temperature, resulting in a deformation thermal effect. It is also found that the DRX of GH625 superalloy is controlled by both strain rate and deformation temperature. When the strain rate ? ≤ 1.0s-1, the size and volume fraction of DRX grains decrease with increasing strain rate. The nucleation mechanism of DRX is composed of discontinuous dynamic recrystallization (DDRX) characterized by the bulging of original grain boundaries and continuous dynamic recrystallization (CDRX) characterized by progressive subgrain rotation. However the size and volume fraction of DRX grains increase at a strain rate of 10.0s-1 due to the deformation thermal effect. The nucleation mechanism of DRX for GH625 superalloy deformed at a strain rate of 10.0s-1 is operating by DDRX with the bulging of original grain boundaries.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164