<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

前驅體碳化復合等離子熔覆涂層

Plasma cladding coatings by precursor carbonization-composition process

  • 摘要: 以鈦鐵粉、鉻粉、鐵粉和碳的前驅體(蔗糖)等為原料,通過前驅體碳化復合技術制備了碳化復合粉,并利用等離子熔覆技術在Q235鋼表面制備了Fe-Cr-C和Fe-Cr-C-Ti涂層.采用X射線衍射和掃描電鏡對涂層的相組成和顯微組織結構進行了分析.結果表明:Fe-Cr-C涂層由(Cr,Fe)7C3初生碳化物和菊花瓣狀分布共晶碳化物(Cr,Fe)7C3與奧氏體組織組成;Fe-Cr-C-Ti涂層由原位合成的TiC相和(Cr,Fe)7C3共晶相與奧氏體相構成.這兩種涂層與基體之間都是冶金結合.涂層中碳化物TiC的體積分數呈現梯度分布,并且涂層的熔合區和中部區域TiC顆粒形狀多為等軸狀顆粒,涂層的表層區域部分TiC顆粒多為樹枝晶顆粒.與Fe-Cr-C涂層相比較,Fe-Cr-C-Ti涂層的抗開裂性更好.Fe-Cr-C和Fe-Cr-C-Ti兩涂層的平均顯微硬度約是750 HV0.2,是基體金屬的3.2倍,從涂層表面到熔合區相差不大.

     

    Abstract: A process of preparing Fe-Cr-C composite powder for precursor carbonization-composition process was developed using the compacts of mixed ferrotitanium, chromium, iron and carbon precursor (saccharose) powers as raw materials, and Fe-Cr-C and Fe-Cr-C-Ti composite coatings were synthesized and deposited on Q235 steel substrates by plasma cladding technology. The phase composition and microstructure of the composite coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is shown that the Fe-Cr-C composite coating consists of (Cr,Fe)7C3 primary phase, (Cr,Fe)7C3 eutectics with a petal-like distribution and austenite, but the Fe-Cr-C-Ti composite coating is composed of in situ TiC and (Cr,Fe)7C3 eutectics and austenite. The two types of composite coatings are also metallurgically bonded to the substrates. The volume content of TiC in the coating shows a gradient distribution. Generally, TiC phases in the fusion zone and central regions are equiaxed, and TiC phase in the surface is dendritic. Compared with the Fe-Cr-C composite coating, the Fe-Cr-C-Ti composite coating has better anti-cracking. The average microhardnesses of the Fe-Cr-C and Fe-Cr-C-Ti composite coatings are about 750 HV0.2, 3.2 times as large as the microhardness of the based metal, and this value changes little from the surface to the fusion zone.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164