<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于Conley指標理論求解反應擴散方程的沖擊波解

Solving the shock wave solutions of reaction-diffusion equations based on Conley index theory

  • 摘要: 利用Conley指標理論研究一類非線性反應擴散方程的沖擊波解的情況.以擴散系數作為反應擴散方程的參數,通過Conley指標和Morse分解分析行波解所滿足的常微分方程的異宿軌道的存在性,并根據偏微分方程的孤立波與沖擊波分別對應于常微分方程的同宿軌道與異宿軌道的思想,進而證明了反應擴散方程鞍-焦型、鞍-結型沖擊波解的存在性.特別地,應用聯絡矩陣和傳遞矩陣可證明鞍-鞍型沖擊波解的存在性和唯一性.使用Conley軟件包和Maple軟件編程計算了聯絡矩陣和傳遞矩陣.

     

    Abstract: Based on Conley index theory, the shock wave solutions of a class of nonlinear reaction-diffusion equations were studied. Considering the diffusion coefficient as a system parameter, the existence of heteroclinic orbits of ordinary differential equations satisfied by traveling wave solutions is analyzed by using Conley index and Morse decompositions. The existence of saddle-focus and saddle-crunode style shock wave solutions of the reaction-diffusion equations is proved on the basis of an idea that the solitary waves and shock waves of partial differential equations correspond to the homoclinic orbits and heteroclinic orbits of ordinary differential equations. In particular, the existence and uniqueness of saddle-saddle style shock wave solutions are proved by using connection matrixes and transition matrixes, which are computed with Conley packages and Maple software by programming.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164