<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

螺旋高翅片管孔型斜軋幾何學分析

Geometric analysis on rotary rolling process of integral helical high finned tubes

  • 摘要: 介紹了螺旋翅片管的結構特點,用空間解析幾何的方法分析了螺旋翅片管結構的本質特征,用螺旋面和螺旋線的基本性質解析了螺旋翅片管的幾何性質.給出了翅片表面任意點的切線和次法線向量表達公式.為了研究軋輥與軋件的空間幾何關系,推導了軋輥與軋件的坐標變換公式,以此為基礎給出了軋片與軋件的切點坐標公式以及軋片半徑的求解公式.

     

    Abstract: Spatial analytic geometry is introduced to analyze the essentially geometric characters of integral helical finned tubes and the spatial relationship between rollers and rolled pieces in the rotary rolling process. A mathematical model is constructed for helical finned tubes based on the concept of helicoidal surfaces and cylindrical helixes. The binormal vector and tangential vector of any point on the helix, corresponding to the roller's axial vector on the point of the tube surface, are achieved by an expression with the main structural parameters of helical finned tubes. In order to research the spatial relationship between rollers and rolled pieces, two coordinate systems are established to set rollers and rolled pieces respectively, and a coordinate transformation expression between the two coordinate systems is deduced. Based on coordinate transformation, the process is introduced to deduce the value of roller radius and the coordinate values of contact points between rollers and rolled pieces.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164