<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

共沉淀法合成三硅酸鎂及其微觀分析

Synthesis of magnesium trisilicate by a reverse strike method and its microscopic analysis

  • 摘要: 由Na2nSiO2和Mg(NO3)2經沉淀法合成了三硅酸鎂,用450℃煅燒或酸化方法對合成的樣品進行改性.采用XRD、IR、TG/DTA和BET等表征手段,考察了原料加入順序、酸化和煅燒過程對樣品的結晶度和表面織構的影響規律,并對其影響機理進行了探討.結果表明,不同滴定順序和不同活化方法制得的樣品均為非晶態物質.TG/DTA分析顯示不同滴定順序樣品的組成相同.pH對樣品的表面織構有明顯的影響.BET分析表明,Mg(NO3)2滴加入泡花堿溶液合成的樣品為微孔材料,以1~3nm和0.7~0.9nm的微孔為主,比表面積達568.93m2·g-1,水合硅酸鎂含量較高.泡花堿滴加入Mg(NO3)2合成的樣品為大孔材料,比表面積為179.40m2·g-1,水合硅酸鎂含量降低.煅燒和酸處理增加樣品的結晶度,減少樣品比表面積,并改變樣品的孔徑分布.煅燒使中孔含量增加,形成中孔材料.酸處理使Mg2+被H+取代,表面形成硅羥基基團,材料以中孔為主.

     

    Abstract: Magnesium trisilicate was synthesized by precipitation using Na2nSiO2 and Mg (NO3)2 as raw materials. The precipitate was subjeet at 450℃ or activated by 15% H2SO4, following whieh the samples were characterized by XRD, IR, TG/DTA and BET to investigate the effects of strike methods, acidic activation and calcination on the crystal phase and surface texture. It is shown that the samples activated by different methods are amorphous. TG/DTA analysis indicates that the samples have the same composition as magnesium silicate hydrate with different contents, pH in the reaction has significant effect on the surface texture of the samples. BET analysis reveals that the sample synthesized by adding Mg(NO3)2 to the sodium silicate solution is microporous with the specific surface area of 568.93 m2 · g-1 and exhibits a multimodal pore width distribution at the micropore regions of 1 to 3 nm and 0.7 to 0.9 nm. The sample with the specific surface area of 179.4 m2·g-1 synthesized by adding Mg(NO3)2 to the sodium silicate solution is mesoporous. Calcination and acidic activation increase the crystalline degree, reduce the specific surface area and change the distribution of pore width. The reactive mechanism was discussed primarily. Calcination increases the quantity of mesopores. Acidic activation makes H+ replaced by Mg2+ to form the Si-OH, and most of the acidic activation samples are mesoporous.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164